Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | infinf | |- ( A e. B -> ( -. A e. Fin <-> _om ~<_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite | |- ( A e. Fin <-> A ~< _om ) |
|
2 | 1 | notbii | |- ( -. A e. Fin <-> -. A ~< _om ) |
3 | omex | |- _om e. _V |
|
4 | domtri | |- ( ( _om e. _V /\ A e. B ) -> ( _om ~<_ A <-> -. A ~< _om ) ) |
|
5 | 3 4 | mpan | |- ( A e. B -> ( _om ~<_ A <-> -. A ~< _om ) ) |
6 | 2 5 | bitr4id | |- ( A e. B -> ( -. A e. Fin <-> _om ~<_ A ) ) |