| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infiso.1 |  |-  ( ph -> F Isom R , S ( A , B ) ) | 
						
							| 2 |  | infiso.2 |  |-  ( ph -> C C_ A ) | 
						
							| 3 |  | infiso.3 |  |-  ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) | 
						
							| 4 |  | infiso.4 |  |-  ( ph -> R Or A ) | 
						
							| 5 |  | isocnv2 |  |-  ( F Isom R , S ( A , B ) <-> F Isom `' R , `' S ( A , B ) ) | 
						
							| 6 | 1 5 | sylib |  |-  ( ph -> F Isom `' R , `' S ( A , B ) ) | 
						
							| 7 | 4 3 | infcllem |  |-  ( ph -> E. x e. A ( A. y e. C -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. C y `' R z ) ) ) | 
						
							| 8 |  | cnvso |  |-  ( R Or A <-> `' R Or A ) | 
						
							| 9 | 4 8 | sylib |  |-  ( ph -> `' R Or A ) | 
						
							| 10 | 6 2 7 9 | supiso |  |-  ( ph -> sup ( ( F " C ) , B , `' S ) = ( F ` sup ( C , A , `' R ) ) ) | 
						
							| 11 |  | df-inf |  |-  inf ( ( F " C ) , B , S ) = sup ( ( F " C ) , B , `' S ) | 
						
							| 12 |  | df-inf |  |-  inf ( C , A , R ) = sup ( C , A , `' R ) | 
						
							| 13 | 12 | fveq2i |  |-  ( F ` inf ( C , A , R ) ) = ( F ` sup ( C , A , `' R ) ) | 
						
							| 14 | 10 11 13 | 3eqtr4g |  |-  ( ph -> inf ( ( F " C ) , B , S ) = ( F ` inf ( C , A , R ) ) ) |