| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infiso.1 |
|- ( ph -> F Isom R , S ( A , B ) ) |
| 2 |
|
infiso.2 |
|- ( ph -> C C_ A ) |
| 3 |
|
infiso.3 |
|- ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) |
| 4 |
|
infiso.4 |
|- ( ph -> R Or A ) |
| 5 |
|
isocnv2 |
|- ( F Isom R , S ( A , B ) <-> F Isom `' R , `' S ( A , B ) ) |
| 6 |
1 5
|
sylib |
|- ( ph -> F Isom `' R , `' S ( A , B ) ) |
| 7 |
4 3
|
infcllem |
|- ( ph -> E. x e. A ( A. y e. C -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. C y `' R z ) ) ) |
| 8 |
|
cnvso |
|- ( R Or A <-> `' R Or A ) |
| 9 |
4 8
|
sylib |
|- ( ph -> `' R Or A ) |
| 10 |
6 2 7 9
|
supiso |
|- ( ph -> sup ( ( F " C ) , B , `' S ) = ( F ` sup ( C , A , `' R ) ) ) |
| 11 |
|
df-inf |
|- inf ( ( F " C ) , B , S ) = sup ( ( F " C ) , B , `' S ) |
| 12 |
|
df-inf |
|- inf ( C , A , R ) = sup ( C , A , `' R ) |
| 13 |
12
|
fveq2i |
|- ( F ` inf ( C , A , R ) ) = ( F ` sup ( C , A , `' R ) ) |
| 14 |
10 11 13
|
3eqtr4g |
|- ( ph -> inf ( ( F " C ) , B , S ) = ( F ` inf ( C , A , R ) ) ) |