Step |
Hyp |
Ref |
Expression |
1 |
|
infleinf.a |
|- ( ph -> A C_ RR* ) |
2 |
|
infleinf.b |
|- ( ph -> B C_ RR* ) |
3 |
|
infleinf.c |
|- ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) |
4 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
5 |
1 4
|
syl |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
6 |
|
pnfge |
|- ( inf ( A , RR* , < ) e. RR* -> inf ( A , RR* , < ) <_ +oo ) |
7 |
5 6
|
syl |
|- ( ph -> inf ( A , RR* , < ) <_ +oo ) |
8 |
7
|
adantr |
|- ( ( ph /\ B = (/) ) -> inf ( A , RR* , < ) <_ +oo ) |
9 |
|
infeq1 |
|- ( B = (/) -> inf ( B , RR* , < ) = inf ( (/) , RR* , < ) ) |
10 |
|
xrinf0 |
|- inf ( (/) , RR* , < ) = +oo |
11 |
10
|
a1i |
|- ( B = (/) -> inf ( (/) , RR* , < ) = +oo ) |
12 |
9 11
|
eqtrd |
|- ( B = (/) -> inf ( B , RR* , < ) = +oo ) |
13 |
12
|
eqcomd |
|- ( B = (/) -> +oo = inf ( B , RR* , < ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ B = (/) ) -> +oo = inf ( B , RR* , < ) ) |
15 |
8 14
|
breqtrd |
|- ( ( ph /\ B = (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
16 |
|
neqne |
|- ( -. B = (/) -> B =/= (/) ) |
17 |
16
|
adantl |
|- ( ( ph /\ -. B = (/) ) -> B =/= (/) ) |
18 |
5
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) e. RR* ) |
19 |
|
id |
|- ( r e. RR -> r e. RR ) |
20 |
|
2re |
|- 2 e. RR |
21 |
20
|
a1i |
|- ( r e. RR -> 2 e. RR ) |
22 |
19 21
|
resubcld |
|- ( r e. RR -> ( r - 2 ) e. RR ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( r - 2 ) e. RR ) |
24 |
|
simpr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( B , RR* , < ) = -oo ) |
25 |
|
infxrunb2 |
|- ( B C_ RR* -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
26 |
2 25
|
syl |
|- ( ph -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> ( A. y e. RR E. x e. B x < y <-> inf ( B , RR* , < ) = -oo ) ) |
28 |
24 27
|
mpbird |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> A. y e. RR E. x e. B x < y ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> A. y e. RR E. x e. B x < y ) |
30 |
|
breq2 |
|- ( y = ( r - 2 ) -> ( x < y <-> x < ( r - 2 ) ) ) |
31 |
30
|
rexbidv |
|- ( y = ( r - 2 ) -> ( E. x e. B x < y <-> E. x e. B x < ( r - 2 ) ) ) |
32 |
31
|
rspcva |
|- ( ( ( r - 2 ) e. RR /\ A. y e. RR E. x e. B x < y ) -> E. x e. B x < ( r - 2 ) ) |
33 |
23 29 32
|
syl2anc |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> E. x e. B x < ( r - 2 ) ) |
34 |
|
simpl |
|- ( ( ph /\ x e. B ) -> ph ) |
35 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
36 |
|
1rp |
|- 1 e. RR+ |
37 |
36
|
a1i |
|- ( ( ph /\ x e. B ) -> 1 e. RR+ ) |
38 |
|
1ex |
|- 1 e. _V |
39 |
|
eleq1 |
|- ( y = 1 -> ( y e. RR+ <-> 1 e. RR+ ) ) |
40 |
39
|
3anbi3d |
|- ( y = 1 -> ( ( ph /\ x e. B /\ y e. RR+ ) <-> ( ph /\ x e. B /\ 1 e. RR+ ) ) ) |
41 |
|
oveq2 |
|- ( y = 1 -> ( x +e y ) = ( x +e 1 ) ) |
42 |
41
|
breq2d |
|- ( y = 1 -> ( z <_ ( x +e y ) <-> z <_ ( x +e 1 ) ) ) |
43 |
42
|
rexbidv |
|- ( y = 1 -> ( E. z e. A z <_ ( x +e y ) <-> E. z e. A z <_ ( x +e 1 ) ) ) |
44 |
40 43
|
imbi12d |
|- ( y = 1 -> ( ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) <-> ( ( ph /\ x e. B /\ 1 e. RR+ ) -> E. z e. A z <_ ( x +e 1 ) ) ) ) |
45 |
38 44 3
|
vtocl |
|- ( ( ph /\ x e. B /\ 1 e. RR+ ) -> E. z e. A z <_ ( x +e 1 ) ) |
46 |
34 35 37 45
|
syl3anc |
|- ( ( ph /\ x e. B ) -> E. z e. A z <_ ( x +e 1 ) ) |
47 |
46
|
adantlr |
|- ( ( ( ph /\ r e. RR ) /\ x e. B ) -> E. z e. A z <_ ( x +e 1 ) ) |
48 |
47
|
3adant3 |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> E. z e. A z <_ ( x +e 1 ) ) |
49 |
|
simp1l |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> ph ) |
50 |
49
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> ph ) |
51 |
50 1
|
syl |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> A C_ RR* ) |
52 |
50 2
|
syl |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> B C_ RR* ) |
53 |
|
simp1r |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> r e. RR ) |
54 |
53
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> r e. RR ) |
55 |
|
simp2 |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> x e. B ) |
56 |
55
|
ad2antrr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> x e. B ) |
57 |
|
simpll3 |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> x < ( r - 2 ) ) |
58 |
|
simplr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z e. A ) |
59 |
|
simpr |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z <_ ( x +e 1 ) ) |
60 |
51 52 54 56 57 58 59
|
infleinflem2 |
|- ( ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) /\ z <_ ( x +e 1 ) ) -> z < r ) |
61 |
60
|
ex |
|- ( ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) /\ z e. A ) -> ( z <_ ( x +e 1 ) -> z < r ) ) |
62 |
61
|
reximdva |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> ( E. z e. A z <_ ( x +e 1 ) -> E. z e. A z < r ) ) |
63 |
48 62
|
mpd |
|- ( ( ( ph /\ r e. RR ) /\ x e. B /\ x < ( r - 2 ) ) -> E. z e. A z < r ) |
64 |
63
|
3exp |
|- ( ( ph /\ r e. RR ) -> ( x e. B -> ( x < ( r - 2 ) -> E. z e. A z < r ) ) ) |
65 |
64
|
adantlr |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( x e. B -> ( x < ( r - 2 ) -> E. z e. A z < r ) ) ) |
66 |
65
|
rexlimdv |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> ( E. x e. B x < ( r - 2 ) -> E. z e. A z < r ) ) |
67 |
33 66
|
mpd |
|- ( ( ( ph /\ inf ( B , RR* , < ) = -oo ) /\ r e. RR ) -> E. z e. A z < r ) |
68 |
67
|
ralrimiva |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> A. r e. RR E. z e. A z < r ) |
69 |
|
infxrunb2 |
|- ( A C_ RR* -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
70 |
1 69
|
syl |
|- ( ph -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> ( A. r e. RR E. z e. A z < r <-> inf ( A , RR* , < ) = -oo ) ) |
72 |
68 71
|
mpbid |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) = -oo ) |
73 |
72 24
|
eqtr4d |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) = inf ( B , RR* , < ) ) |
74 |
18 73
|
xreqled |
|- ( ( ph /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
75 |
74
|
adantlr |
|- ( ( ( ph /\ B =/= (/) ) /\ inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
76 |
|
mnfxr |
|- -oo e. RR* |
77 |
76
|
a1i |
|- ( ph -> -oo e. RR* ) |
78 |
77
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo e. RR* ) |
79 |
|
infxrcl |
|- ( B C_ RR* -> inf ( B , RR* , < ) e. RR* ) |
80 |
2 79
|
syl |
|- ( ph -> inf ( B , RR* , < ) e. RR* ) |
81 |
80
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> inf ( B , RR* , < ) e. RR* ) |
82 |
|
mnfle |
|- ( inf ( B , RR* , < ) e. RR* -> -oo <_ inf ( B , RR* , < ) ) |
83 |
81 82
|
syl |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo <_ inf ( B , RR* , < ) ) |
84 |
|
neqne |
|- ( -. inf ( B , RR* , < ) = -oo -> inf ( B , RR* , < ) =/= -oo ) |
85 |
84
|
necomd |
|- ( -. inf ( B , RR* , < ) = -oo -> -oo =/= inf ( B , RR* , < ) ) |
86 |
85
|
adantl |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo =/= inf ( B , RR* , < ) ) |
87 |
78 81 83 86
|
xrleneltd |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> -oo < inf ( B , RR* , < ) ) |
88 |
5
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( A , RR* , < ) e. RR* ) |
89 |
80
|
ad2antrr |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( B , RR* , < ) e. RR* ) |
90 |
|
nfv |
|- F/ b ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) |
91 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> B C_ RR* ) |
92 |
|
simpllr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> B =/= (/) ) |
93 |
|
simpr |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> -oo < inf ( B , RR* , < ) ) |
94 |
|
infxrbnd2 |
|- ( B C_ RR* -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
95 |
2 94
|
syl |
|- ( ph -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
96 |
95
|
adantr |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> ( E. b e. RR A. x e. B b <_ x <-> -oo < inf ( B , RR* , < ) ) ) |
97 |
93 96
|
mpbird |
|- ( ( ph /\ -oo < inf ( B , RR* , < ) ) -> E. b e. RR A. x e. B b <_ x ) |
98 |
97
|
ad4ant13 |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> E. b e. RR A. x e. B b <_ x ) |
99 |
|
simpr |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> w e. RR+ ) |
100 |
99
|
rphalfcld |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> ( w / 2 ) e. RR+ ) |
101 |
90 91 92 98 100
|
infrpge |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
102 |
|
simpll |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> ph ) |
103 |
|
simpr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> x e. B ) |
104 |
|
rphalfcl |
|- ( w e. RR+ -> ( w / 2 ) e. RR+ ) |
105 |
104
|
ad2antlr |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> ( w / 2 ) e. RR+ ) |
106 |
|
ovex |
|- ( w / 2 ) e. _V |
107 |
|
eleq1 |
|- ( y = ( w / 2 ) -> ( y e. RR+ <-> ( w / 2 ) e. RR+ ) ) |
108 |
107
|
3anbi3d |
|- ( y = ( w / 2 ) -> ( ( ph /\ x e. B /\ y e. RR+ ) <-> ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) ) ) |
109 |
|
oveq2 |
|- ( y = ( w / 2 ) -> ( x +e y ) = ( x +e ( w / 2 ) ) ) |
110 |
109
|
breq2d |
|- ( y = ( w / 2 ) -> ( z <_ ( x +e y ) <-> z <_ ( x +e ( w / 2 ) ) ) ) |
111 |
110
|
rexbidv |
|- ( y = ( w / 2 ) -> ( E. z e. A z <_ ( x +e y ) <-> E. z e. A z <_ ( x +e ( w / 2 ) ) ) ) |
112 |
108 111
|
imbi12d |
|- ( y = ( w / 2 ) -> ( ( ( ph /\ x e. B /\ y e. RR+ ) -> E. z e. A z <_ ( x +e y ) ) <-> ( ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) ) ) |
113 |
106 112 3
|
vtocl |
|- ( ( ph /\ x e. B /\ ( w / 2 ) e. RR+ ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
114 |
102 103 105 113
|
syl3anc |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
115 |
114
|
3adant3 |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> E. z e. A z <_ ( x +e ( w / 2 ) ) ) |
116 |
|
simp11l |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> ph ) |
117 |
116 1
|
syl |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> A C_ RR* ) |
118 |
116 2
|
syl |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> B C_ RR* ) |
119 |
|
simp11 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> ( ph /\ w e. RR+ ) ) |
120 |
119
|
simprd |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> w e. RR+ ) |
121 |
|
simp12 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> x e. B ) |
122 |
|
simp3 |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
123 |
122
|
3ad2ant1 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) |
124 |
|
simp2 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> z e. A ) |
125 |
|
simp3 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> z <_ ( x +e ( w / 2 ) ) ) |
126 |
117 118 120 121 123 124 125
|
infleinflem1 |
|- ( ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) /\ z e. A /\ z <_ ( x +e ( w / 2 ) ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
127 |
126
|
3exp |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> ( z e. A -> ( z <_ ( x +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) ) |
128 |
127
|
rexlimdv |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> ( E. z e. A z <_ ( x +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
129 |
115 128
|
mpd |
|- ( ( ( ph /\ w e. RR+ ) /\ x e. B /\ x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
130 |
129
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( x e. B -> ( x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) ) |
131 |
130
|
rexlimdv |
|- ( ( ph /\ w e. RR+ ) -> ( E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
132 |
131
|
ad4ant14 |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> ( E. x e. B x <_ ( inf ( B , RR* , < ) +e ( w / 2 ) ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) ) |
133 |
101 132
|
mpd |
|- ( ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) /\ w e. RR+ ) -> inf ( A , RR* , < ) <_ ( inf ( B , RR* , < ) +e w ) ) |
134 |
88 89 133
|
xrlexaddrp |
|- ( ( ( ph /\ B =/= (/) ) /\ -oo < inf ( B , RR* , < ) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
135 |
87 134
|
syldan |
|- ( ( ( ph /\ B =/= (/) ) /\ -. inf ( B , RR* , < ) = -oo ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
136 |
75 135
|
pm2.61dan |
|- ( ( ph /\ B =/= (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
137 |
17 136
|
syldan |
|- ( ( ph /\ -. B = (/) ) -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |
138 |
15 137
|
pm2.61dan |
|- ( ph -> inf ( A , RR* , < ) <_ inf ( B , RR* , < ) ) |