Step |
Hyp |
Ref |
Expression |
1 |
|
infleinflem2.a |
|- ( ph -> A C_ RR* ) |
2 |
|
infleinflem2.b |
|- ( ph -> B C_ RR* ) |
3 |
|
infleinflem2.r |
|- ( ph -> R e. RR ) |
4 |
|
infleinflem2.x |
|- ( ph -> X e. B ) |
5 |
|
infleinflem2.t |
|- ( ph -> X < ( R - 2 ) ) |
6 |
|
infleinflem2.z |
|- ( ph -> Z e. A ) |
7 |
|
infleinflem2.l |
|- ( ph -> Z <_ ( X +e 1 ) ) |
8 |
3
|
adantr |
|- ( ( ph /\ Z = -oo ) -> R e. RR ) |
9 |
|
simpr |
|- ( ( ph /\ Z = -oo ) -> Z = -oo ) |
10 |
|
simpr |
|- ( ( R e. RR /\ Z = -oo ) -> Z = -oo ) |
11 |
|
mnflt |
|- ( R e. RR -> -oo < R ) |
12 |
11
|
adantr |
|- ( ( R e. RR /\ Z = -oo ) -> -oo < R ) |
13 |
10 12
|
eqbrtrd |
|- ( ( R e. RR /\ Z = -oo ) -> Z < R ) |
14 |
8 9 13
|
syl2anc |
|- ( ( ph /\ Z = -oo ) -> Z < R ) |
15 |
|
simpl |
|- ( ( ph /\ -. Z = -oo ) -> ph ) |
16 |
|
neqne |
|- ( -. Z = -oo -> Z =/= -oo ) |
17 |
16
|
adantl |
|- ( ( ph /\ -. Z = -oo ) -> Z =/= -oo ) |
18 |
3
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> R e. RR ) |
19 |
|
id |
|- ( ph -> ph ) |
20 |
2
|
sselda |
|- ( ( ph /\ X e. B ) -> X e. RR* ) |
21 |
19 4 20
|
syl2anc |
|- ( ph -> X e. RR* ) |
22 |
21
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> X e. RR* ) |
23 |
1
|
sselda |
|- ( ( ph /\ Z e. A ) -> Z e. RR* ) |
24 |
19 6 23
|
syl2anc |
|- ( ph -> Z e. RR* ) |
25 |
24
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> Z e. RR* ) |
26 |
|
simpr |
|- ( ( ph /\ Z =/= -oo ) -> Z =/= -oo ) |
27 |
|
pnfxr |
|- +oo e. RR* |
28 |
27
|
a1i |
|- ( ph -> +oo e. RR* ) |
29 |
|
peano2rem |
|- ( R e. RR -> ( R - 1 ) e. RR ) |
30 |
29
|
rexrd |
|- ( R e. RR -> ( R - 1 ) e. RR* ) |
31 |
3 30
|
syl |
|- ( ph -> ( R - 1 ) e. RR* ) |
32 |
2 4
|
sseldd |
|- ( ph -> X e. RR* ) |
33 |
|
id |
|- ( X e. RR* -> X e. RR* ) |
34 |
|
1xr |
|- 1 e. RR* |
35 |
34
|
a1i |
|- ( X e. RR* -> 1 e. RR* ) |
36 |
33 35
|
xaddcld |
|- ( X e. RR* -> ( X +e 1 ) e. RR* ) |
37 |
32 36
|
syl |
|- ( ph -> ( X +e 1 ) e. RR* ) |
38 |
|
oveq1 |
|- ( X = -oo -> ( X +e 1 ) = ( -oo +e 1 ) ) |
39 |
|
1re |
|- 1 e. RR |
40 |
|
renepnf |
|- ( 1 e. RR -> 1 =/= +oo ) |
41 |
39 40
|
ax-mp |
|- 1 =/= +oo |
42 |
|
xaddmnf2 |
|- ( ( 1 e. RR* /\ 1 =/= +oo ) -> ( -oo +e 1 ) = -oo ) |
43 |
34 41 42
|
mp2an |
|- ( -oo +e 1 ) = -oo |
44 |
43
|
a1i |
|- ( X = -oo -> ( -oo +e 1 ) = -oo ) |
45 |
38 44
|
eqtrd |
|- ( X = -oo -> ( X +e 1 ) = -oo ) |
46 |
45
|
adantl |
|- ( ( R e. RR /\ X = -oo ) -> ( X +e 1 ) = -oo ) |
47 |
29
|
mnfltd |
|- ( R e. RR -> -oo < ( R - 1 ) ) |
48 |
47
|
adantr |
|- ( ( R e. RR /\ X = -oo ) -> -oo < ( R - 1 ) ) |
49 |
46 48
|
eqbrtrd |
|- ( ( R e. RR /\ X = -oo ) -> ( X +e 1 ) < ( R - 1 ) ) |
50 |
49
|
adantlr |
|- ( ( ( R e. RR /\ X e. RR* ) /\ X = -oo ) -> ( X +e 1 ) < ( R - 1 ) ) |
51 |
50
|
3adantl3 |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ X = -oo ) -> ( X +e 1 ) < ( R - 1 ) ) |
52 |
|
simpl |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) ) |
53 |
|
simpl2 |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> X e. RR* ) |
54 |
|
neqne |
|- ( -. X = -oo -> X =/= -oo ) |
55 |
54
|
adantl |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> X =/= -oo ) |
56 |
|
simp2 |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> X e. RR* ) |
57 |
27
|
a1i |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> +oo e. RR* ) |
58 |
|
id |
|- ( R e. RR -> R e. RR ) |
59 |
|
2re |
|- 2 e. RR |
60 |
59
|
a1i |
|- ( R e. RR -> 2 e. RR ) |
61 |
58 60
|
resubcld |
|- ( R e. RR -> ( R - 2 ) e. RR ) |
62 |
61
|
rexrd |
|- ( R e. RR -> ( R - 2 ) e. RR* ) |
63 |
62
|
3ad2ant1 |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> ( R - 2 ) e. RR* ) |
64 |
|
simp3 |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> X < ( R - 2 ) ) |
65 |
61
|
ltpnfd |
|- ( R e. RR -> ( R - 2 ) < +oo ) |
66 |
65
|
3ad2ant1 |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> ( R - 2 ) < +oo ) |
67 |
56 63 57 64 66
|
xrlttrd |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> X < +oo ) |
68 |
56 57 67
|
xrltned |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> X =/= +oo ) |
69 |
68
|
adantr |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> X =/= +oo ) |
70 |
53 55 69
|
xrred |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> X e. RR ) |
71 |
|
id |
|- ( X e. RR -> X e. RR ) |
72 |
71
|
ad2antlr |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> X e. RR ) |
73 |
61
|
ad2antrr |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( R - 2 ) e. RR ) |
74 |
|
1red |
|- ( X e. RR -> 1 e. RR ) |
75 |
72 74
|
syl |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> 1 e. RR ) |
76 |
|
simpr |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> X < ( R - 2 ) ) |
77 |
72 73 75 76
|
ltadd1dd |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( X + 1 ) < ( ( R - 2 ) + 1 ) ) |
78 |
|
recn |
|- ( R e. RR -> R e. CC ) |
79 |
|
id |
|- ( R e. CC -> R e. CC ) |
80 |
|
2cnd |
|- ( R e. CC -> 2 e. CC ) |
81 |
|
1cnd |
|- ( R e. CC -> 1 e. CC ) |
82 |
79 80 81
|
subsubd |
|- ( R e. CC -> ( R - ( 2 - 1 ) ) = ( ( R - 2 ) + 1 ) ) |
83 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
84 |
83
|
oveq2i |
|- ( R - ( 2 - 1 ) ) = ( R - 1 ) |
85 |
84
|
a1i |
|- ( R e. CC -> ( R - ( 2 - 1 ) ) = ( R - 1 ) ) |
86 |
82 85
|
eqtr3d |
|- ( R e. CC -> ( ( R - 2 ) + 1 ) = ( R - 1 ) ) |
87 |
78 86
|
syl |
|- ( R e. RR -> ( ( R - 2 ) + 1 ) = ( R - 1 ) ) |
88 |
87
|
ad2antrr |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( ( R - 2 ) + 1 ) = ( R - 1 ) ) |
89 |
77 88
|
breqtrd |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( X + 1 ) < ( R - 1 ) ) |
90 |
71 74
|
rexaddd |
|- ( X e. RR -> ( X +e 1 ) = ( X + 1 ) ) |
91 |
90
|
breq1d |
|- ( X e. RR -> ( ( X +e 1 ) < ( R - 1 ) <-> ( X + 1 ) < ( R - 1 ) ) ) |
92 |
91
|
ad2antlr |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( ( X +e 1 ) < ( R - 1 ) <-> ( X + 1 ) < ( R - 1 ) ) ) |
93 |
89 92
|
mpbird |
|- ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) -> ( X +e 1 ) < ( R - 1 ) ) |
94 |
93
|
an32s |
|- ( ( ( R e. RR /\ X < ( R - 2 ) ) /\ X e. RR ) -> ( X +e 1 ) < ( R - 1 ) ) |
95 |
94
|
3adantl2 |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ X e. RR ) -> ( X +e 1 ) < ( R - 1 ) ) |
96 |
52 70 95
|
syl2anc |
|- ( ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) /\ -. X = -oo ) -> ( X +e 1 ) < ( R - 1 ) ) |
97 |
51 96
|
pm2.61dan |
|- ( ( R e. RR /\ X e. RR* /\ X < ( R - 2 ) ) -> ( X +e 1 ) < ( R - 1 ) ) |
98 |
3 32 5 97
|
syl3anc |
|- ( ph -> ( X +e 1 ) < ( R - 1 ) ) |
99 |
24 37 31 7 98
|
xrlelttrd |
|- ( ph -> Z < ( R - 1 ) ) |
100 |
29
|
ltpnfd |
|- ( R e. RR -> ( R - 1 ) < +oo ) |
101 |
3 100
|
syl |
|- ( ph -> ( R - 1 ) < +oo ) |
102 |
24 31 28 99 101
|
xrlttrd |
|- ( ph -> Z < +oo ) |
103 |
24 28 102
|
xrltned |
|- ( ph -> Z =/= +oo ) |
104 |
103
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> Z =/= +oo ) |
105 |
25 26 104
|
xrred |
|- ( ( ph /\ Z =/= -oo ) -> Z e. RR ) |
106 |
7
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> Z <_ ( X +e 1 ) ) |
107 |
|
simpl3 |
|- ( ( ( Z e. RR /\ X e. RR* /\ Z <_ ( X +e 1 ) ) /\ X = -oo ) -> Z <_ ( X +e 1 ) ) |
108 |
45
|
adantl |
|- ( ( Z e. RR /\ X = -oo ) -> ( X +e 1 ) = -oo ) |
109 |
|
mnflt |
|- ( Z e. RR -> -oo < Z ) |
110 |
109
|
adantr |
|- ( ( Z e. RR /\ X = -oo ) -> -oo < Z ) |
111 |
108 110
|
eqbrtrd |
|- ( ( Z e. RR /\ X = -oo ) -> ( X +e 1 ) < Z ) |
112 |
|
mnfxr |
|- -oo e. RR* |
113 |
108 112
|
eqeltrdi |
|- ( ( Z e. RR /\ X = -oo ) -> ( X +e 1 ) e. RR* ) |
114 |
|
rexr |
|- ( Z e. RR -> Z e. RR* ) |
115 |
114
|
adantr |
|- ( ( Z e. RR /\ X = -oo ) -> Z e. RR* ) |
116 |
113 115
|
xrltnled |
|- ( ( Z e. RR /\ X = -oo ) -> ( ( X +e 1 ) < Z <-> -. Z <_ ( X +e 1 ) ) ) |
117 |
111 116
|
mpbid |
|- ( ( Z e. RR /\ X = -oo ) -> -. Z <_ ( X +e 1 ) ) |
118 |
117
|
3ad2antl1 |
|- ( ( ( Z e. RR /\ X e. RR* /\ Z <_ ( X +e 1 ) ) /\ X = -oo ) -> -. Z <_ ( X +e 1 ) ) |
119 |
107 118
|
pm2.65da |
|- ( ( Z e. RR /\ X e. RR* /\ Z <_ ( X +e 1 ) ) -> -. X = -oo ) |
120 |
119
|
neqned |
|- ( ( Z e. RR /\ X e. RR* /\ Z <_ ( X +e 1 ) ) -> X =/= -oo ) |
121 |
105 22 106 120
|
syl3anc |
|- ( ( ph /\ Z =/= -oo ) -> X =/= -oo ) |
122 |
3 21 5 68
|
syl3anc |
|- ( ph -> X =/= +oo ) |
123 |
122
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> X =/= +oo ) |
124 |
22 121 123
|
xrred |
|- ( ( ph /\ Z =/= -oo ) -> X e. RR ) |
125 |
5
|
adantr |
|- ( ( ph /\ Z =/= -oo ) -> X < ( R - 2 ) ) |
126 |
18 124 125
|
jca31 |
|- ( ( ph /\ Z =/= -oo ) -> ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) ) |
127 |
|
simplr |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> Z e. RR ) |
128 |
|
simp-4r |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> X e. RR ) |
129 |
71 74
|
readdcld |
|- ( X e. RR -> ( X + 1 ) e. RR ) |
130 |
90 129
|
eqeltrd |
|- ( X e. RR -> ( X +e 1 ) e. RR ) |
131 |
128 130
|
syl |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> ( X +e 1 ) e. RR ) |
132 |
58
|
ad4antr |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> R e. RR ) |
133 |
|
simpr |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> Z <_ ( X +e 1 ) ) |
134 |
130
|
ad3antlr |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> ( X +e 1 ) e. RR ) |
135 |
29
|
ad3antrrr |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> ( R - 1 ) e. RR ) |
136 |
58
|
ad3antrrr |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> R e. RR ) |
137 |
93
|
adantr |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> ( X +e 1 ) < ( R - 1 ) ) |
138 |
136
|
ltm1d |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> ( R - 1 ) < R ) |
139 |
134 135 136 137 138
|
lttrd |
|- ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) -> ( X +e 1 ) < R ) |
140 |
139
|
adantr |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> ( X +e 1 ) < R ) |
141 |
127 131 132 133 140
|
lelttrd |
|- ( ( ( ( ( R e. RR /\ X e. RR ) /\ X < ( R - 2 ) ) /\ Z e. RR ) /\ Z <_ ( X +e 1 ) ) -> Z < R ) |
142 |
126 105 106 141
|
syl21anc |
|- ( ( ph /\ Z =/= -oo ) -> Z < R ) |
143 |
15 17 142
|
syl2anc |
|- ( ( ph /\ -. Z = -oo ) -> Z < R ) |
144 |
14 143
|
pm2.61dan |
|- ( ph -> Z < R ) |