Description: Lemma for infm3 . (Contributed by NM, 14-Jun-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | infm3lem | |- ( x e. RR -> E. y e. RR x = -u y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
2 | recn | |- ( x e. RR -> x e. CC ) |
|
3 | 2 | negnegd | |- ( x e. RR -> -u -u x = x ) |
4 | 3 | eqcomd | |- ( x e. RR -> x = -u -u x ) |
5 | negeq | |- ( y = -u x -> -u y = -u -u x ) |
|
6 | 5 | rspceeqv | |- ( ( -u x e. RR /\ x = -u -u x ) -> E. y e. RR x = -u y ) |
7 | 1 4 6 | syl2anc | |- ( x e. RR -> E. y e. RR x = -u y ) |