Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. (Contributed by NM, 1-Oct-2004) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmap | |- ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( A ^m B ) e. _V |
|
| 2 | numth3 | |- ( ( A ^m B ) e. _V -> ( A ^m B ) e. dom card ) |
|
| 3 | 1 2 | ax-mp | |- ( A ^m B ) e. dom card |
| 4 | infmap2 | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |