Metamath Proof Explorer


Theorem infmap

Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. (Contributed by NM, 1-Oct-2004) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infmap
|- ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } )

Proof

Step Hyp Ref Expression
1 ovex
 |-  ( A ^m B ) e. _V
2 numth3
 |-  ( ( A ^m B ) e. _V -> ( A ^m B ) e. dom card )
3 1 2 ax-mp
 |-  ( A ^m B ) e. dom card
4 infmap2
 |-  ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } )
5 3 4 mp3an3
 |-  ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } )