Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. (Contributed by NM, 1-Oct-2004) (Proof shortened by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infmap | |- ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex | |- ( A ^m B ) e. _V |
|
2 | numth3 | |- ( ( A ^m B ) e. _V -> ( A ^m B ) e. dom card ) |
|
3 | 1 2 | ax-mp | |- ( A ^m B ) e. dom card |
4 | infmap2 | |- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
|
5 | 3 4 | mp3an3 | |- ( ( _om ~<_ A /\ B ~<_ A ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |