Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( B = (/) -> ( A ^m B ) = ( A ^m (/) ) ) |
2 |
|
breq2 |
|- ( B = (/) -> ( x ~~ B <-> x ~~ (/) ) ) |
3 |
2
|
anbi2d |
|- ( B = (/) -> ( ( x C_ A /\ x ~~ B ) <-> ( x C_ A /\ x ~~ (/) ) ) ) |
4 |
3
|
abbidv |
|- ( B = (/) -> { x | ( x C_ A /\ x ~~ B ) } = { x | ( x C_ A /\ x ~~ (/) ) } ) |
5 |
1 4
|
breq12d |
|- ( B = (/) -> ( ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } <-> ( A ^m (/) ) ~~ { x | ( x C_ A /\ x ~~ (/) ) } ) ) |
6 |
|
simpl2 |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B ~<_ A ) |
7 |
|
reldom |
|- Rel ~<_ |
8 |
7
|
brrelex1i |
|- ( B ~<_ A -> B e. _V ) |
9 |
6 8
|
syl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B e. _V ) |
10 |
7
|
brrelex2i |
|- ( B ~<_ A -> A e. _V ) |
11 |
6 10
|
syl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A e. _V ) |
12 |
|
xpcomeng |
|- ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) ) |
14 |
|
simpl3 |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) e. dom card ) |
15 |
|
simpr |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> B =/= (/) ) |
16 |
|
mapdom3 |
|- ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |
17 |
11 9 15 16
|
syl3anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A ~<_ ( A ^m B ) ) |
18 |
|
numdom |
|- ( ( ( A ^m B ) e. dom card /\ A ~<_ ( A ^m B ) ) -> A e. dom card ) |
19 |
14 17 18
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> A e. dom card ) |
20 |
|
simpl1 |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> _om ~<_ A ) |
21 |
|
infxpabs |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~~ A ) |
22 |
19 20 15 6 21
|
syl22anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A X. B ) ~~ A ) |
23 |
|
entr |
|- ( ( ( B X. A ) ~~ ( A X. B ) /\ ( A X. B ) ~~ A ) -> ( B X. A ) ~~ A ) |
24 |
13 22 23
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( B X. A ) ~~ A ) |
25 |
|
ssenen |
|- ( ( B X. A ) ~~ A -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
26 |
24 25
|
syl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
27 |
|
relen |
|- Rel ~~ |
28 |
27
|
brrelex1i |
|- ( { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V ) |
29 |
26 28
|
syl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V ) |
30 |
|
abid2 |
|- { x | x e. ( A ^m B ) } = ( A ^m B ) |
31 |
|
elmapi |
|- ( x e. ( A ^m B ) -> x : B --> A ) |
32 |
|
fssxp |
|- ( x : B --> A -> x C_ ( B X. A ) ) |
33 |
|
ffun |
|- ( x : B --> A -> Fun x ) |
34 |
|
vex |
|- x e. _V |
35 |
34
|
fundmen |
|- ( Fun x -> dom x ~~ x ) |
36 |
|
ensym |
|- ( dom x ~~ x -> x ~~ dom x ) |
37 |
33 35 36
|
3syl |
|- ( x : B --> A -> x ~~ dom x ) |
38 |
|
fdm |
|- ( x : B --> A -> dom x = B ) |
39 |
37 38
|
breqtrd |
|- ( x : B --> A -> x ~~ B ) |
40 |
32 39
|
jca |
|- ( x : B --> A -> ( x C_ ( B X. A ) /\ x ~~ B ) ) |
41 |
31 40
|
syl |
|- ( x e. ( A ^m B ) -> ( x C_ ( B X. A ) /\ x ~~ B ) ) |
42 |
41
|
ss2abi |
|- { x | x e. ( A ^m B ) } C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } |
43 |
30 42
|
eqsstrri |
|- ( A ^m B ) C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } |
44 |
|
ssdomg |
|- ( { x | ( x C_ ( B X. A ) /\ x ~~ B ) } e. _V -> ( ( A ^m B ) C_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } -> ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ) ) |
45 |
29 43 44
|
mpisyl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ) |
46 |
|
domentr |
|- ( ( ( A ^m B ) ~<_ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } /\ { x | ( x C_ ( B X. A ) /\ x ~~ B ) } ~~ { x | ( x C_ A /\ x ~~ B ) } ) -> ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } ) |
47 |
45 26 46
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } ) |
48 |
|
ovex |
|- ( A ^m B ) e. _V |
49 |
48
|
mptex |
|- ( f e. ( A ^m B ) |-> ran f ) e. _V |
50 |
49
|
rnex |
|- ran ( f e. ( A ^m B ) |-> ran f ) e. _V |
51 |
|
ensym |
|- ( x ~~ B -> B ~~ x ) |
52 |
51
|
ad2antll |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> B ~~ x ) |
53 |
|
bren |
|- ( B ~~ x <-> E. f f : B -1-1-onto-> x ) |
54 |
52 53
|
sylib |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f f : B -1-1-onto-> x ) |
55 |
|
f1of |
|- ( f : B -1-1-onto-> x -> f : B --> x ) |
56 |
55
|
adantl |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f : B --> x ) |
57 |
|
simplrl |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> x C_ A ) |
58 |
56 57
|
fssd |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f : B --> A ) |
59 |
11 9
|
elmapd |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) <-> f : B --> A ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ( f e. ( A ^m B ) <-> f : B --> A ) ) |
61 |
58 60
|
mpbird |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> f e. ( A ^m B ) ) |
62 |
|
f1ofo |
|- ( f : B -1-1-onto-> x -> f : B -onto-> x ) |
63 |
|
forn |
|- ( f : B -onto-> x -> ran f = x ) |
64 |
62 63
|
syl |
|- ( f : B -1-1-onto-> x -> ran f = x ) |
65 |
64
|
adantl |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ran f = x ) |
66 |
65
|
eqcomd |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> x = ran f ) |
67 |
61 66
|
jca |
|- ( ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) /\ f : B -1-1-onto-> x ) -> ( f e. ( A ^m B ) /\ x = ran f ) ) |
68 |
67
|
ex |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> ( f : B -1-1-onto-> x -> ( f e. ( A ^m B ) /\ x = ran f ) ) ) |
69 |
68
|
eximdv |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> ( E. f f : B -1-1-onto-> x -> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) ) |
70 |
54 69
|
mpd |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) |
71 |
|
df-rex |
|- ( E. f e. ( A ^m B ) x = ran f <-> E. f ( f e. ( A ^m B ) /\ x = ran f ) ) |
72 |
70 71
|
sylibr |
|- ( ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) /\ ( x C_ A /\ x ~~ B ) ) -> E. f e. ( A ^m B ) x = ran f ) |
73 |
72
|
ex |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( ( x C_ A /\ x ~~ B ) -> E. f e. ( A ^m B ) x = ran f ) ) |
74 |
73
|
ss2abdv |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } C_ { x | E. f e. ( A ^m B ) x = ran f } ) |
75 |
|
eqid |
|- ( f e. ( A ^m B ) |-> ran f ) = ( f e. ( A ^m B ) |-> ran f ) |
76 |
75
|
rnmpt |
|- ran ( f e. ( A ^m B ) |-> ran f ) = { x | E. f e. ( A ^m B ) x = ran f } |
77 |
74 76
|
sseqtrrdi |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } C_ ran ( f e. ( A ^m B ) |-> ran f ) ) |
78 |
|
ssdomg |
|- ( ran ( f e. ( A ^m B ) |-> ran f ) e. _V -> ( { x | ( x C_ A /\ x ~~ B ) } C_ ran ( f e. ( A ^m B ) |-> ran f ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) ) ) |
79 |
50 77 78
|
mpsyl |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) ) |
80 |
|
vex |
|- f e. _V |
81 |
80
|
rnex |
|- ran f e. _V |
82 |
81
|
rgenw |
|- A. f e. ( A ^m B ) ran f e. _V |
83 |
75
|
fnmpt |
|- ( A. f e. ( A ^m B ) ran f e. _V -> ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) ) |
84 |
82 83
|
mp1i |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) ) |
85 |
|
dffn4 |
|- ( ( f e. ( A ^m B ) |-> ran f ) Fn ( A ^m B ) <-> ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) ) |
86 |
84 85
|
sylib |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) ) |
87 |
|
fodomnum |
|- ( ( A ^m B ) e. dom card -> ( ( f e. ( A ^m B ) |-> ran f ) : ( A ^m B ) -onto-> ran ( f e. ( A ^m B ) |-> ran f ) -> ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) ) |
88 |
14 86 87
|
sylc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) |
89 |
|
domtr |
|- ( ( { x | ( x C_ A /\ x ~~ B ) } ~<_ ran ( f e. ( A ^m B ) |-> ran f ) /\ ran ( f e. ( A ^m B ) |-> ran f ) ~<_ ( A ^m B ) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) |
90 |
79 88 89
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) |
91 |
|
sbth |
|- ( ( ( A ^m B ) ~<_ { x | ( x C_ A /\ x ~~ B ) } /\ { x | ( x C_ A /\ x ~~ B ) } ~<_ ( A ^m B ) ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
92 |
47 90 91
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) /\ B =/= (/) ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |
93 |
7
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
94 |
93
|
3ad2ant1 |
|- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> A e. _V ) |
95 |
|
map0e |
|- ( A e. _V -> ( A ^m (/) ) = 1o ) |
96 |
94 95
|
syl |
|- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m (/) ) = 1o ) |
97 |
|
1oex |
|- 1o e. _V |
98 |
97
|
enref |
|- 1o ~~ 1o |
99 |
|
df-sn |
|- { (/) } = { x | x = (/) } |
100 |
|
df1o2 |
|- 1o = { (/) } |
101 |
|
en0 |
|- ( x ~~ (/) <-> x = (/) ) |
102 |
101
|
anbi2i |
|- ( ( x C_ A /\ x ~~ (/) ) <-> ( x C_ A /\ x = (/) ) ) |
103 |
|
0ss |
|- (/) C_ A |
104 |
|
sseq1 |
|- ( x = (/) -> ( x C_ A <-> (/) C_ A ) ) |
105 |
103 104
|
mpbiri |
|- ( x = (/) -> x C_ A ) |
106 |
105
|
pm4.71ri |
|- ( x = (/) <-> ( x C_ A /\ x = (/) ) ) |
107 |
102 106
|
bitr4i |
|- ( ( x C_ A /\ x ~~ (/) ) <-> x = (/) ) |
108 |
107
|
abbii |
|- { x | ( x C_ A /\ x ~~ (/) ) } = { x | x = (/) } |
109 |
99 100 108
|
3eqtr4ri |
|- { x | ( x C_ A /\ x ~~ (/) ) } = 1o |
110 |
98 109
|
breqtrri |
|- 1o ~~ { x | ( x C_ A /\ x ~~ (/) ) } |
111 |
96 110
|
eqbrtrdi |
|- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m (/) ) ~~ { x | ( x C_ A /\ x ~~ (/) ) } ) |
112 |
5 92 111
|
pm2.61ne |
|- ( ( _om ~<_ A /\ B ~<_ A /\ ( A ^m B ) e. dom card ) -> ( A ^m B ) ~~ { x | ( x C_ A /\ x ~~ B ) } ) |