Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infmin.1 | |- ( ph -> R Or A ) |
|
| infmin.2 | |- ( ph -> C e. A ) |
||
| infmin.3 | |- ( ph -> C e. B ) |
||
| infmin.4 | |- ( ( ph /\ y e. B ) -> -. y R C ) |
||
| Assertion | infmin | |- ( ph -> inf ( B , A , R ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmin.1 | |- ( ph -> R Or A ) |
|
| 2 | infmin.2 | |- ( ph -> C e. A ) |
|
| 3 | infmin.3 | |- ( ph -> C e. B ) |
|
| 4 | infmin.4 | |- ( ( ph /\ y e. B ) -> -. y R C ) |
|
| 5 | simprr | |- ( ( ph /\ ( y e. A /\ C R y ) ) -> C R y ) |
|
| 6 | breq1 | |- ( z = C -> ( z R y <-> C R y ) ) |
|
| 7 | 6 | rspcev | |- ( ( C e. B /\ C R y ) -> E. z e. B z R y ) |
| 8 | 3 5 7 | syl2an2r | |- ( ( ph /\ ( y e. A /\ C R y ) ) -> E. z e. B z R y ) |
| 9 | 1 2 4 8 | eqinfd | |- ( ph -> inf ( B , A , R ) = C ) |