Metamath Proof Explorer


Theorem infmin

Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infmin.1
|- ( ph -> R Or A )
infmin.2
|- ( ph -> C e. A )
infmin.3
|- ( ph -> C e. B )
infmin.4
|- ( ( ph /\ y e. B ) -> -. y R C )
Assertion infmin
|- ( ph -> inf ( B , A , R ) = C )

Proof

Step Hyp Ref Expression
1 infmin.1
 |-  ( ph -> R Or A )
2 infmin.2
 |-  ( ph -> C e. A )
3 infmin.3
 |-  ( ph -> C e. B )
4 infmin.4
 |-  ( ( ph /\ y e. B ) -> -. y R C )
5 simprr
 |-  ( ( ph /\ ( y e. A /\ C R y ) ) -> C R y )
6 breq1
 |-  ( z = C -> ( z R y <-> C R y ) )
7 6 rspcev
 |-  ( ( C e. B /\ C R y ) -> E. z e. B z R y )
8 3 5 7 syl2an2r
 |-  ( ( ph /\ ( y e. A /\ C R y ) ) -> E. z e. B z R y )
9 1 2 4 8 eqinfd
 |-  ( ph -> inf ( B , A , R ) = C )