| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reltxrnmnf |  |-  A. x e. RR* ( -oo < x -> E. z e. RR z < x ) | 
						
							| 2 |  | xrltso |  |-  < Or RR* | 
						
							| 3 | 2 | a1i |  |-  ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> < Or RR* ) | 
						
							| 4 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 5 | 4 | a1i |  |-  ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> -oo e. RR* ) | 
						
							| 6 |  | rexr |  |-  ( y e. RR -> y e. RR* ) | 
						
							| 7 |  | nltmnf |  |-  ( y e. RR* -> -. y < -oo ) | 
						
							| 8 | 6 7 | syl |  |-  ( y e. RR -> -. y < -oo ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ y e. RR ) -> -. y < -oo ) | 
						
							| 10 |  | breq2 |  |-  ( x = y -> ( -oo < x <-> -oo < y ) ) | 
						
							| 11 |  | breq2 |  |-  ( x = y -> ( z < x <-> z < y ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( x = y -> ( E. z e. RR z < x <-> E. z e. RR z < y ) ) | 
						
							| 13 | 10 12 | imbi12d |  |-  ( x = y -> ( ( -oo < x -> E. z e. RR z < x ) <-> ( -oo < y -> E. z e. RR z < y ) ) ) | 
						
							| 14 | 13 | rspcv |  |-  ( y e. RR* -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> ( -oo < y -> E. z e. RR z < y ) ) ) | 
						
							| 15 | 14 | com23 |  |-  ( y e. RR* -> ( -oo < y -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( y e. RR* /\ -oo < y ) -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ ( y e. RR* /\ -oo < y ) ) -> E. z e. RR z < y ) | 
						
							| 18 | 3 5 9 17 | eqinfd |  |-  ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> inf ( RR , RR* , < ) = -oo ) | 
						
							| 19 | 1 18 | ax-mp |  |-  inf ( RR , RR* , < ) = -oo |