| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpltrp |  |-  A. x e. RR+ E. y e. RR+ y < x | 
						
							| 2 |  | ltso |  |-  < Or RR | 
						
							| 3 | 2 | a1i |  |-  ( A. x e. RR+ E. y e. RR+ y < x -> < Or RR ) | 
						
							| 4 |  | 0red |  |-  ( A. x e. RR+ E. y e. RR+ y < x -> 0 e. RR ) | 
						
							| 5 |  | 0red |  |-  ( z e. RR+ -> 0 e. RR ) | 
						
							| 6 |  | rpre |  |-  ( z e. RR+ -> z e. RR ) | 
						
							| 7 |  | rpge0 |  |-  ( z e. RR+ -> 0 <_ z ) | 
						
							| 8 | 5 6 7 | lensymd |  |-  ( z e. RR+ -> -. z < 0 ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A. x e. RR+ E. y e. RR+ y < x /\ z e. RR+ ) -> -. z < 0 ) | 
						
							| 10 |  | elrp |  |-  ( z e. RR+ <-> ( z e. RR /\ 0 < z ) ) | 
						
							| 11 |  | breq2 |  |-  ( x = z -> ( y < x <-> y < z ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( x = z -> ( E. y e. RR+ y < x <-> E. y e. RR+ y < z ) ) | 
						
							| 13 | 12 | rspcv |  |-  ( z e. RR+ -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) | 
						
							| 14 | 10 13 | sylbir |  |-  ( ( z e. RR /\ 0 < z ) -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) | 
						
							| 15 | 14 | impcom |  |-  ( ( A. x e. RR+ E. y e. RR+ y < x /\ ( z e. RR /\ 0 < z ) ) -> E. y e. RR+ y < z ) | 
						
							| 16 | 3 4 9 15 | eqinfd |  |-  ( A. x e. RR+ E. y e. RR+ y < x -> inf ( RR+ , RR , < ) = 0 ) | 
						
							| 17 | 1 16 | ax-mp |  |-  inf ( RR+ , RR , < ) = 0 |