Step |
Hyp |
Ref |
Expression |
1 |
|
rpltrp |
|- A. x e. RR+ E. y e. RR+ y < x |
2 |
|
ltso |
|- < Or RR |
3 |
2
|
a1i |
|- ( A. x e. RR+ E. y e. RR+ y < x -> < Or RR ) |
4 |
|
0red |
|- ( A. x e. RR+ E. y e. RR+ y < x -> 0 e. RR ) |
5 |
|
0red |
|- ( z e. RR+ -> 0 e. RR ) |
6 |
|
rpre |
|- ( z e. RR+ -> z e. RR ) |
7 |
|
rpge0 |
|- ( z e. RR+ -> 0 <_ z ) |
8 |
5 6 7
|
lensymd |
|- ( z e. RR+ -> -. z < 0 ) |
9 |
8
|
adantl |
|- ( ( A. x e. RR+ E. y e. RR+ y < x /\ z e. RR+ ) -> -. z < 0 ) |
10 |
|
elrp |
|- ( z e. RR+ <-> ( z e. RR /\ 0 < z ) ) |
11 |
|
breq2 |
|- ( x = z -> ( y < x <-> y < z ) ) |
12 |
11
|
rexbidv |
|- ( x = z -> ( E. y e. RR+ y < x <-> E. y e. RR+ y < z ) ) |
13 |
12
|
rspcv |
|- ( z e. RR+ -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) |
14 |
10 13
|
sylbir |
|- ( ( z e. RR /\ 0 < z ) -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) |
15 |
14
|
impcom |
|- ( ( A. x e. RR+ E. y e. RR+ y < x /\ ( z e. RR /\ 0 < z ) ) -> E. y e. RR+ y < z ) |
16 |
3 4 9 15
|
eqinfd |
|- ( A. x e. RR+ E. y e. RR+ y < x -> inf ( RR+ , RR , < ) = 0 ) |
17 |
1 16
|
ax-mp |
|- inf ( RR+ , RR , < ) = 0 |