Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | infn0 | |- ( _om ~<_ A -> A =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | |- (/) e. _om |
|
2 | infsdomnn | |- ( ( _om ~<_ A /\ (/) e. _om ) -> (/) ~< A ) |
|
3 | 1 2 | mpan2 | |- ( _om ~<_ A -> (/) ~< A ) |
4 | reldom | |- Rel ~<_ |
|
5 | 4 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
6 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
7 | 5 6 | syl | |- ( _om ~<_ A -> ( (/) ~< A <-> A =/= (/) ) ) |
8 | 3 7 | mpbid | |- ( _om ~<_ A -> A =/= (/) ) |