| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi |  |-  ( _om ~<_ A -> E. f f : _om -1-1-> A ) | 
						
							| 2 |  | peano1 |  |-  (/) e. _om | 
						
							| 3 |  | f1f1orn |  |-  ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) | 
						
							| 4 | 3 | adantr |  |-  ( ( f : _om -1-1-> A /\ A = (/) ) -> f : _om -1-1-onto-> ran f ) | 
						
							| 5 |  | f1f |  |-  ( f : _om -1-1-> A -> f : _om --> A ) | 
						
							| 6 | 5 | frnd |  |-  ( f : _om -1-1-> A -> ran f C_ A ) | 
						
							| 7 |  | sseq0 |  |-  ( ( ran f C_ A /\ A = (/) ) -> ran f = (/) ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( f : _om -1-1-> A /\ A = (/) ) -> ran f = (/) ) | 
						
							| 9 | 8 | f1oeq3d |  |-  ( ( f : _om -1-1-> A /\ A = (/) ) -> ( f : _om -1-1-onto-> ran f <-> f : _om -1-1-onto-> (/) ) ) | 
						
							| 10 | 4 9 | mpbid |  |-  ( ( f : _om -1-1-> A /\ A = (/) ) -> f : _om -1-1-onto-> (/) ) | 
						
							| 11 |  | f1ocnv |  |-  ( f : _om -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> _om ) | 
						
							| 12 |  | noel |  |-  -. (/) e. (/) | 
						
							| 13 |  | f1o00 |  |-  ( `' f : (/) -1-1-onto-> _om <-> ( `' f = (/) /\ _om = (/) ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( `' f : (/) -1-1-onto-> _om -> _om = (/) ) | 
						
							| 15 | 14 | eleq2d |  |-  ( `' f : (/) -1-1-onto-> _om -> ( (/) e. _om <-> (/) e. (/) ) ) | 
						
							| 16 | 12 15 | mtbiri |  |-  ( `' f : (/) -1-1-onto-> _om -> -. (/) e. _om ) | 
						
							| 17 | 10 11 16 | 3syl |  |-  ( ( f : _om -1-1-> A /\ A = (/) ) -> -. (/) e. _om ) | 
						
							| 18 | 2 17 | mt2 |  |-  -. ( f : _om -1-1-> A /\ A = (/) ) | 
						
							| 19 | 18 | imnani |  |-  ( f : _om -1-1-> A -> -. A = (/) ) | 
						
							| 20 | 19 | neqned |  |-  ( f : _om -1-1-> A -> A =/= (/) ) | 
						
							| 21 | 20 | exlimiv |  |-  ( E. f f : _om -1-1-> A -> A =/= (/) ) | 
						
							| 22 | 1 21 | syl |  |-  ( _om ~<_ A -> A =/= (/) ) |