Metamath Proof Explorer


Theorem infn0

Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion infn0
|- ( _om ~<_ A -> A =/= (/) )

Proof

Step Hyp Ref Expression
1 peano1
 |-  (/) e. _om
2 infsdomnn
 |-  ( ( _om ~<_ A /\ (/) e. _om ) -> (/) ~< A )
3 1 2 mpan2
 |-  ( _om ~<_ A -> (/) ~< A )
4 reldom
 |-  Rel ~<_
5 4 brrelex2i
 |-  ( _om ~<_ A -> A e. _V )
6 0sdomg
 |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) )
7 5 6 syl
 |-  ( _om ~<_ A -> ( (/) ~< A <-> A =/= (/) ) )
8 3 7 mpbid
 |-  ( _om ~<_ A -> A =/= (/) )