Description: Shorter proof of infn0 using ax-un . (Contributed by NM, 23-Oct-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infn0ALT | |- ( _om ~<_ A -> A =/= (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | peano1 | |- (/) e. _om | |
| 2 | infsdomnn | |- ( ( _om ~<_ A /\ (/) e. _om ) -> (/) ~< A ) | |
| 3 | 1 2 | mpan2 | |- ( _om ~<_ A -> (/) ~< A ) | 
| 4 | reldom | |- Rel ~<_ | |
| 5 | 4 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) | 
| 6 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | |
| 7 | 5 6 | syl | |- ( _om ~<_ A -> ( (/) ~< A <-> A =/= (/) ) ) | 
| 8 | 3 7 | mpbid | |- ( _om ~<_ A -> A =/= (/) ) |