| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infnsuprnmpt.x |
|- F/ x ph |
| 2 |
|
infnsuprnmpt.a |
|- ( ph -> A =/= (/) ) |
| 3 |
|
infnsuprnmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 4 |
|
infnsuprnmpt.l |
|- ( ph -> E. y e. RR A. x e. A y <_ B ) |
| 5 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 6 |
1 5 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR ) |
| 7 |
1 3 5 2
|
rnmptn0 |
|- ( ph -> ran ( x e. A |-> B ) =/= (/) ) |
| 8 |
4
|
rnmptlb |
|- ( ph -> E. y e. RR A. z e. ran ( x e. A |-> B ) y <_ z ) |
| 9 |
|
infrenegsup |
|- ( ( ran ( x e. A |-> B ) C_ RR /\ ran ( x e. A |-> B ) =/= (/) /\ E. y e. RR A. z e. ran ( x e. A |-> B ) y <_ z ) -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ph -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) ) |
| 11 |
|
eqid |
|- ( x e. A |-> -u B ) = ( x e. A |-> -u B ) |
| 12 |
|
rabidim2 |
|- ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> -u w e. ran ( x e. A |-> B ) ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> -u w e. ran ( x e. A |-> B ) ) |
| 14 |
|
negex |
|- -u w e. _V |
| 15 |
5
|
elrnmpt |
|- ( -u w e. _V -> ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) ) |
| 16 |
14 15
|
ax-mp |
|- ( -u w e. ran ( x e. A |-> B ) <-> E. x e. A -u w = B ) |
| 17 |
13 16
|
sylib |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> E. x e. A -u w = B ) |
| 18 |
|
nfcv |
|- F/_ x w |
| 19 |
18
|
nfneg |
|- F/_ x -u w |
| 20 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 21 |
20
|
nfrn |
|- F/_ x ran ( x e. A |-> B ) |
| 22 |
19 21
|
nfel |
|- F/ x -u w e. ran ( x e. A |-> B ) |
| 23 |
|
nfcv |
|- F/_ x RR |
| 24 |
22 23
|
nfrabw |
|- F/_ x { w e. RR | -u w e. ran ( x e. A |-> B ) } |
| 25 |
18 24
|
nfel |
|- F/ x w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } |
| 26 |
1 25
|
nfan |
|- F/ x ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) |
| 27 |
|
rabidim1 |
|- ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> w e. RR ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. RR ) |
| 29 |
|
negeq |
|- ( -u w = B -> -u -u w = -u B ) |
| 30 |
29
|
eqcomd |
|- ( -u w = B -> -u B = -u -u w ) |
| 31 |
30
|
3ad2ant3 |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> -u B = -u -u w ) |
| 32 |
|
simp1r |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> w e. RR ) |
| 33 |
|
recn |
|- ( w e. RR -> w e. CC ) |
| 34 |
33
|
negnegd |
|- ( w e. RR -> -u -u w = w ) |
| 35 |
32 34
|
syl |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> -u -u w = w ) |
| 36 |
31 35
|
eqtr2d |
|- ( ( ( ph /\ w e. RR ) /\ x e. A /\ -u w = B ) -> w = -u B ) |
| 37 |
36
|
3exp |
|- ( ( ph /\ w e. RR ) -> ( x e. A -> ( -u w = B -> w = -u B ) ) ) |
| 38 |
28 37
|
syldan |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> ( x e. A -> ( -u w = B -> w = -u B ) ) ) |
| 39 |
26 38
|
reximdai |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> ( E. x e. A -u w = B -> E. x e. A w = -u B ) ) |
| 40 |
17 39
|
mpd |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> E. x e. A w = -u B ) |
| 41 |
|
simpr |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) |
| 42 |
11 40 41
|
elrnmptd |
|- ( ( ph /\ w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) -> w e. ran ( x e. A |-> -u B ) ) |
| 43 |
42
|
ex |
|- ( ph -> ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } -> w e. ran ( x e. A |-> -u B ) ) ) |
| 44 |
|
vex |
|- w e. _V |
| 45 |
11
|
elrnmpt |
|- ( w e. _V -> ( w e. ran ( x e. A |-> -u B ) <-> E. x e. A w = -u B ) ) |
| 46 |
44 45
|
ax-mp |
|- ( w e. ran ( x e. A |-> -u B ) <-> E. x e. A w = -u B ) |
| 47 |
46
|
biimpi |
|- ( w e. ran ( x e. A |-> -u B ) -> E. x e. A w = -u B ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> E. x e. A w = -u B ) |
| 49 |
18 23
|
nfel |
|- F/ x w e. RR |
| 50 |
49 22
|
nfan |
|- F/ x ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) |
| 51 |
|
simp3 |
|- ( ( ph /\ x e. A /\ w = -u B ) -> w = -u B ) |
| 52 |
3
|
renegcld |
|- ( ( ph /\ x e. A ) -> -u B e. RR ) |
| 53 |
52
|
3adant3 |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u B e. RR ) |
| 54 |
51 53
|
eqeltrd |
|- ( ( ph /\ x e. A /\ w = -u B ) -> w e. RR ) |
| 55 |
|
simp2 |
|- ( ( ph /\ x e. A /\ w = -u B ) -> x e. A ) |
| 56 |
51
|
negeqd |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u w = -u -u B ) |
| 57 |
3
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 58 |
57
|
negnegd |
|- ( ( ph /\ x e. A ) -> -u -u B = B ) |
| 59 |
58
|
3adant3 |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u -u B = B ) |
| 60 |
56 59
|
eqtrd |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u w = B ) |
| 61 |
|
rspe |
|- ( ( x e. A /\ -u w = B ) -> E. x e. A -u w = B ) |
| 62 |
55 60 61
|
syl2anc |
|- ( ( ph /\ x e. A /\ w = -u B ) -> E. x e. A -u w = B ) |
| 63 |
14
|
a1i |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u w e. _V ) |
| 64 |
5 62 63
|
elrnmptd |
|- ( ( ph /\ x e. A /\ w = -u B ) -> -u w e. ran ( x e. A |-> B ) ) |
| 65 |
54 64
|
jca |
|- ( ( ph /\ x e. A /\ w = -u B ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) |
| 66 |
65
|
3exp |
|- ( ph -> ( x e. A -> ( w = -u B -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) ) ) |
| 67 |
1 50 66
|
rexlimd |
|- ( ph -> ( E. x e. A w = -u B -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) ) |
| 68 |
67
|
imp |
|- ( ( ph /\ E. x e. A w = -u B ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) |
| 69 |
48 68
|
syldan |
|- ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) |
| 70 |
|
rabid |
|- ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> ( w e. RR /\ -u w e. ran ( x e. A |-> B ) ) ) |
| 71 |
69 70
|
sylibr |
|- ( ( ph /\ w e. ran ( x e. A |-> -u B ) ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) |
| 72 |
71
|
ex |
|- ( ph -> ( w e. ran ( x e. A |-> -u B ) -> w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } ) ) |
| 73 |
43 72
|
impbid |
|- ( ph -> ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) |
| 74 |
73
|
alrimiv |
|- ( ph -> A. w ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) |
| 75 |
|
nfrab1 |
|- F/_ w { w e. RR | -u w e. ran ( x e. A |-> B ) } |
| 76 |
|
nfcv |
|- F/_ w ran ( x e. A |-> -u B ) |
| 77 |
75 76
|
cleqf |
|- ( { w e. RR | -u w e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -u B ) <-> A. w ( w e. { w e. RR | -u w e. ran ( x e. A |-> B ) } <-> w e. ran ( x e. A |-> -u B ) ) ) |
| 78 |
74 77
|
sylibr |
|- ( ph -> { w e. RR | -u w e. ran ( x e. A |-> B ) } = ran ( x e. A |-> -u B ) ) |
| 79 |
78
|
supeq1d |
|- ( ph -> sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = sup ( ran ( x e. A |-> -u B ) , RR , < ) ) |
| 80 |
79
|
negeqd |
|- ( ph -> -u sup ( { w e. RR | -u w e. ran ( x e. A |-> B ) } , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) |
| 81 |
|
eqidd |
|- ( ph -> -u sup ( ran ( x e. A |-> -u B ) , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) |
| 82 |
10 80 81
|
3eqtrd |
|- ( ph -> inf ( ran ( x e. A |-> B ) , RR , < ) = -u sup ( ran ( x e. A |-> -u B ) , RR , < ) ) |