Metamath Proof Explorer


Theorem infpn

Description: There exist infinitely many prime numbers: for any positive integer N , there exists a prime number j greater than N . (See infpn2 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006)

Ref Expression
Assertion infpn
|- ( N e. NN -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( ( ! ` N ) + 1 ) = ( ( ! ` N ) + 1 )
2 1 infpnlem2
 |-  ( N e. NN -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) )