Step |
Hyp |
Ref |
Expression |
1 |
|
infpn2.1 |
|- S = { n e. NN | ( 1 < n /\ A. m e. NN ( ( n / m ) e. NN -> ( m = 1 \/ m = n ) ) ) } |
2 |
1
|
ssrab3 |
|- S C_ NN |
3 |
|
infpn |
|- ( j e. NN -> E. k e. NN ( j < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) |
4 |
|
nnge1 |
|- ( j e. NN -> 1 <_ j ) |
5 |
4
|
adantr |
|- ( ( j e. NN /\ k e. NN ) -> 1 <_ j ) |
6 |
|
1re |
|- 1 e. RR |
7 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
8 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
9 |
|
lelttr |
|- ( ( 1 e. RR /\ j e. RR /\ k e. RR ) -> ( ( 1 <_ j /\ j < k ) -> 1 < k ) ) |
10 |
6 7 8 9
|
mp3an3an |
|- ( ( j e. NN /\ k e. NN ) -> ( ( 1 <_ j /\ j < k ) -> 1 < k ) ) |
11 |
5 10
|
mpand |
|- ( ( j e. NN /\ k e. NN ) -> ( j < k -> 1 < k ) ) |
12 |
11
|
ancld |
|- ( ( j e. NN /\ k e. NN ) -> ( j < k -> ( j < k /\ 1 < k ) ) ) |
13 |
12
|
anim1d |
|- ( ( j e. NN /\ k e. NN ) -> ( ( j < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) -> ( ( j < k /\ 1 < k ) /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
14 |
|
anass |
|- ( ( ( j < k /\ 1 < k ) /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) <-> ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
15 |
13 14
|
syl6ib |
|- ( ( j e. NN /\ k e. NN ) -> ( ( j < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) -> ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) ) |
16 |
15
|
reximdva |
|- ( j e. NN -> ( E. k e. NN ( j < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) -> E. k e. NN ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) ) |
17 |
3 16
|
mpd |
|- ( j e. NN -> E. k e. NN ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
18 |
|
breq2 |
|- ( n = k -> ( 1 < n <-> 1 < k ) ) |
19 |
|
oveq1 |
|- ( n = k -> ( n / m ) = ( k / m ) ) |
20 |
19
|
eleq1d |
|- ( n = k -> ( ( n / m ) e. NN <-> ( k / m ) e. NN ) ) |
21 |
|
equequ2 |
|- ( n = k -> ( m = n <-> m = k ) ) |
22 |
21
|
orbi2d |
|- ( n = k -> ( ( m = 1 \/ m = n ) <-> ( m = 1 \/ m = k ) ) ) |
23 |
20 22
|
imbi12d |
|- ( n = k -> ( ( ( n / m ) e. NN -> ( m = 1 \/ m = n ) ) <-> ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) |
24 |
23
|
ralbidv |
|- ( n = k -> ( A. m e. NN ( ( n / m ) e. NN -> ( m = 1 \/ m = n ) ) <-> A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) |
25 |
18 24
|
anbi12d |
|- ( n = k -> ( ( 1 < n /\ A. m e. NN ( ( n / m ) e. NN -> ( m = 1 \/ m = n ) ) ) <-> ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
26 |
25 1
|
elrab2 |
|- ( k e. S <-> ( k e. NN /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
27 |
26
|
anbi1i |
|- ( ( k e. S /\ j < k ) <-> ( ( k e. NN /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) /\ j < k ) ) |
28 |
|
anass |
|- ( ( ( k e. NN /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) /\ j < k ) <-> ( k e. NN /\ ( ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) /\ j < k ) ) ) |
29 |
|
ancom |
|- ( ( ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) /\ j < k ) <-> ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
30 |
29
|
anbi2i |
|- ( ( k e. NN /\ ( ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) /\ j < k ) ) <-> ( k e. NN /\ ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) ) |
31 |
27 28 30
|
3bitri |
|- ( ( k e. S /\ j < k ) <-> ( k e. NN /\ ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) ) |
32 |
31
|
rexbii2 |
|- ( E. k e. S j < k <-> E. k e. NN ( j < k /\ ( 1 < k /\ A. m e. NN ( ( k / m ) e. NN -> ( m = 1 \/ m = k ) ) ) ) ) |
33 |
17 32
|
sylibr |
|- ( j e. NN -> E. k e. S j < k ) |
34 |
33
|
rgen |
|- A. j e. NN E. k e. S j < k |
35 |
|
unben |
|- ( ( S C_ NN /\ A. j e. NN E. k e. S j < k ) -> S ~~ NN ) |
36 |
2 34 35
|
mp2an |
|- S ~~ NN |