Step |
Hyp |
Ref |
Expression |
1 |
|
infpnlem.1 |
|- K = ( ( ! ` N ) + 1 ) |
2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
3 |
2
|
faccld |
|- ( N e. NN -> ( ! ` N ) e. NN ) |
4 |
3
|
peano2nnd |
|- ( N e. NN -> ( ( ! ` N ) + 1 ) e. NN ) |
5 |
1 4
|
eqeltrid |
|- ( N e. NN -> K e. NN ) |
6 |
3
|
nnge1d |
|- ( N e. NN -> 1 <_ ( ! ` N ) ) |
7 |
|
1nn |
|- 1 e. NN |
8 |
|
nnleltp1 |
|- ( ( 1 e. NN /\ ( ! ` N ) e. NN ) -> ( 1 <_ ( ! ` N ) <-> 1 < ( ( ! ` N ) + 1 ) ) ) |
9 |
7 3 8
|
sylancr |
|- ( N e. NN -> ( 1 <_ ( ! ` N ) <-> 1 < ( ( ! ` N ) + 1 ) ) ) |
10 |
6 9
|
mpbid |
|- ( N e. NN -> 1 < ( ( ! ` N ) + 1 ) ) |
11 |
10 1
|
breqtrrdi |
|- ( N e. NN -> 1 < K ) |
12 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
13 |
|
nnne0 |
|- ( K e. NN -> K =/= 0 ) |
14 |
12 13
|
jca |
|- ( K e. NN -> ( K e. CC /\ K =/= 0 ) ) |
15 |
|
divid |
|- ( ( K e. CC /\ K =/= 0 ) -> ( K / K ) = 1 ) |
16 |
5 14 15
|
3syl |
|- ( N e. NN -> ( K / K ) = 1 ) |
17 |
16 7
|
eqeltrdi |
|- ( N e. NN -> ( K / K ) e. NN ) |
18 |
|
breq2 |
|- ( j = K -> ( 1 < j <-> 1 < K ) ) |
19 |
|
oveq2 |
|- ( j = K -> ( K / j ) = ( K / K ) ) |
20 |
19
|
eleq1d |
|- ( j = K -> ( ( K / j ) e. NN <-> ( K / K ) e. NN ) ) |
21 |
18 20
|
anbi12d |
|- ( j = K -> ( ( 1 < j /\ ( K / j ) e. NN ) <-> ( 1 < K /\ ( K / K ) e. NN ) ) ) |
22 |
21
|
rspcev |
|- ( ( K e. NN /\ ( 1 < K /\ ( K / K ) e. NN ) ) -> E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) ) |
23 |
5 11 17 22
|
syl12anc |
|- ( N e. NN -> E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) ) |
24 |
|
breq2 |
|- ( j = k -> ( 1 < j <-> 1 < k ) ) |
25 |
|
oveq2 |
|- ( j = k -> ( K / j ) = ( K / k ) ) |
26 |
25
|
eleq1d |
|- ( j = k -> ( ( K / j ) e. NN <-> ( K / k ) e. NN ) ) |
27 |
24 26
|
anbi12d |
|- ( j = k -> ( ( 1 < j /\ ( K / j ) e. NN ) <-> ( 1 < k /\ ( K / k ) e. NN ) ) ) |
28 |
27
|
nnwos |
|- ( E. j e. NN ( 1 < j /\ ( K / j ) e. NN ) -> E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) ) |
29 |
23 28
|
syl |
|- ( N e. NN -> E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) ) |
30 |
1
|
infpnlem1 |
|- ( ( N e. NN /\ j e. NN ) -> ( ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) -> ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) ) |
31 |
30
|
reximdva |
|- ( N e. NN -> ( E. j e. NN ( ( 1 < j /\ ( K / j ) e. NN ) /\ A. k e. NN ( ( 1 < k /\ ( K / k ) e. NN ) -> j <_ k ) ) -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) ) |
32 |
29 31
|
mpd |
|- ( N e. NN -> E. j e. NN ( N < j /\ A. k e. NN ( ( j / k ) e. NN -> ( k = 1 \/ k = j ) ) ) ) |