| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infn0 |  |-  ( _om ~<_ A -> A =/= (/) ) | 
						
							| 2 |  | n0 |  |-  ( A =/= (/) <-> E. y y e. A ) | 
						
							| 3 | 1 2 | sylib |  |-  ( _om ~<_ A -> E. y y e. A ) | 
						
							| 4 |  | reldom |  |-  Rel ~<_ | 
						
							| 5 | 4 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 6 | 5 | difexd |  |-  ( _om ~<_ A -> ( A \ { y } ) e. _V ) | 
						
							| 7 | 6 | adantr |  |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) e. _V ) | 
						
							| 8 |  | simpr |  |-  ( ( _om ~<_ A /\ y e. A ) -> y e. A ) | 
						
							| 9 |  | difsnpss |  |-  ( y e. A <-> ( A \ { y } ) C. A ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) C. A ) | 
						
							| 11 |  | infdifsn |  |-  ( _om ~<_ A -> ( A \ { y } ) ~~ A ) | 
						
							| 12 | 11 | adantr |  |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) ~~ A ) | 
						
							| 13 | 10 12 | jca |  |-  ( ( _om ~<_ A /\ y e. A ) -> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) | 
						
							| 14 |  | psseq1 |  |-  ( x = ( A \ { y } ) -> ( x C. A <-> ( A \ { y } ) C. A ) ) | 
						
							| 15 |  | breq1 |  |-  ( x = ( A \ { y } ) -> ( x ~~ A <-> ( A \ { y } ) ~~ A ) ) | 
						
							| 16 | 14 15 | anbi12d |  |-  ( x = ( A \ { y } ) -> ( ( x C. A /\ x ~~ A ) <-> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) ) | 
						
							| 17 | 7 13 16 | spcedv |  |-  ( ( _om ~<_ A /\ y e. A ) -> E. x ( x C. A /\ x ~~ A ) ) | 
						
							| 18 | 3 17 | exlimddv |  |-  ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |