Metamath Proof Explorer


Theorem infpss

Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infpss
|- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) )

Proof

Step Hyp Ref Expression
1 infn0
 |-  ( _om ~<_ A -> A =/= (/) )
2 n0
 |-  ( A =/= (/) <-> E. y y e. A )
3 1 2 sylib
 |-  ( _om ~<_ A -> E. y y e. A )
4 reldom
 |-  Rel ~<_
5 4 brrelex2i
 |-  ( _om ~<_ A -> A e. _V )
6 5 difexd
 |-  ( _om ~<_ A -> ( A \ { y } ) e. _V )
7 6 adantr
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) e. _V )
8 simpr
 |-  ( ( _om ~<_ A /\ y e. A ) -> y e. A )
9 difsnpss
 |-  ( y e. A <-> ( A \ { y } ) C. A )
10 8 9 sylib
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) C. A )
11 infdifsn
 |-  ( _om ~<_ A -> ( A \ { y } ) ~~ A )
12 11 adantr
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( A \ { y } ) ~~ A )
13 10 12 jca
 |-  ( ( _om ~<_ A /\ y e. A ) -> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) )
14 psseq1
 |-  ( x = ( A \ { y } ) -> ( x C. A <-> ( A \ { y } ) C. A ) )
15 breq1
 |-  ( x = ( A \ { y } ) -> ( x ~~ A <-> ( A \ { y } ) ~~ A ) )
16 14 15 anbi12d
 |-  ( x = ( A \ { y } ) -> ( ( x C. A /\ x ~~ A ) <-> ( ( A \ { y } ) C. A /\ ( A \ { y } ) ~~ A ) ) )
17 7 13 16 spcedv
 |-  ( ( _om ~<_ A /\ y e. A ) -> E. x ( x C. A /\ x ~~ A ) )
18 3 17 exlimddv
 |-  ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) )