Step |
Hyp |
Ref |
Expression |
1 |
|
pssnel |
|- ( X C. A -> E. y ( y e. A /\ -. y e. X ) ) |
2 |
1
|
adantr |
|- ( ( X C. A /\ X ~~ A ) -> E. y ( y e. A /\ -. y e. X ) ) |
3 |
|
eldif |
|- ( y e. ( A \ X ) <-> ( y e. A /\ -. y e. X ) ) |
4 |
|
pssss |
|- ( X C. A -> X C_ A ) |
5 |
|
bren |
|- ( X ~~ A <-> E. f f : X -1-1-onto-> A ) |
6 |
|
simpr |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> f : X -1-1-onto-> A ) |
7 |
|
f1ofo |
|- ( f : X -1-1-onto-> A -> f : X -onto-> A ) |
8 |
|
forn |
|- ( f : X -onto-> A -> ran f = A ) |
9 |
6 7 8
|
3syl |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ran f = A ) |
10 |
|
vex |
|- f e. _V |
11 |
10
|
rnex |
|- ran f e. _V |
12 |
9 11
|
eqeltrrdi |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> A e. _V ) |
13 |
|
simplr |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> X C_ A ) |
14 |
|
simpll |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> y e. ( A \ X ) ) |
15 |
|
eqid |
|- ( rec ( `' f , y ) |` _om ) = ( rec ( `' f , y ) |` _om ) |
16 |
13 6 14 15
|
infpssrlem5 |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ( A e. _V -> _om ~<_ A ) ) |
17 |
12 16
|
mpd |
|- ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> _om ~<_ A ) |
18 |
17
|
ex |
|- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( f : X -1-1-onto-> A -> _om ~<_ A ) ) |
19 |
18
|
exlimdv |
|- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( E. f f : X -1-1-onto-> A -> _om ~<_ A ) ) |
20 |
5 19
|
syl5bi |
|- ( ( y e. ( A \ X ) /\ X C_ A ) -> ( X ~~ A -> _om ~<_ A ) ) |
21 |
20
|
ex |
|- ( y e. ( A \ X ) -> ( X C_ A -> ( X ~~ A -> _om ~<_ A ) ) ) |
22 |
4 21
|
syl5 |
|- ( y e. ( A \ X ) -> ( X C. A -> ( X ~~ A -> _om ~<_ A ) ) ) |
23 |
22
|
impd |
|- ( y e. ( A \ X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
24 |
3 23
|
sylbir |
|- ( ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
25 |
24
|
exlimiv |
|- ( E. y ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) |
26 |
2 25
|
mpcom |
|- ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) |