| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssnel |  |-  ( X C. A -> E. y ( y e. A /\ -. y e. X ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( X C. A /\ X ~~ A ) -> E. y ( y e. A /\ -. y e. X ) ) | 
						
							| 3 |  | eldif |  |-  ( y e. ( A \ X ) <-> ( y e. A /\ -. y e. X ) ) | 
						
							| 4 |  | pssss |  |-  ( X C. A -> X C_ A ) | 
						
							| 5 |  | bren |  |-  ( X ~~ A <-> E. f f : X -1-1-onto-> A ) | 
						
							| 6 |  | simpr |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> f : X -1-1-onto-> A ) | 
						
							| 7 |  | f1ofo |  |-  ( f : X -1-1-onto-> A -> f : X -onto-> A ) | 
						
							| 8 |  | forn |  |-  ( f : X -onto-> A -> ran f = A ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ran f = A ) | 
						
							| 10 |  | vex |  |-  f e. _V | 
						
							| 11 | 10 | rnex |  |-  ran f e. _V | 
						
							| 12 | 9 11 | eqeltrrdi |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> A e. _V ) | 
						
							| 13 |  | simplr |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> X C_ A ) | 
						
							| 14 |  | simpll |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> y e. ( A \ X ) ) | 
						
							| 15 |  | eqid |  |-  ( rec ( `' f , y ) |` _om ) = ( rec ( `' f , y ) |` _om ) | 
						
							| 16 | 13 6 14 15 | infpssrlem5 |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ( A e. _V -> _om ~<_ A ) ) | 
						
							| 17 | 12 16 | mpd |  |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> _om ~<_ A ) | 
						
							| 18 | 17 | ex |  |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( f : X -1-1-onto-> A -> _om ~<_ A ) ) | 
						
							| 19 | 18 | exlimdv |  |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( E. f f : X -1-1-onto-> A -> _om ~<_ A ) ) | 
						
							| 20 | 5 19 | biimtrid |  |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( X ~~ A -> _om ~<_ A ) ) | 
						
							| 21 | 20 | ex |  |-  ( y e. ( A \ X ) -> ( X C_ A -> ( X ~~ A -> _om ~<_ A ) ) ) | 
						
							| 22 | 4 21 | syl5 |  |-  ( y e. ( A \ X ) -> ( X C. A -> ( X ~~ A -> _om ~<_ A ) ) ) | 
						
							| 23 | 22 | impd |  |-  ( y e. ( A \ X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) | 
						
							| 24 | 3 23 | sylbir |  |-  ( ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) | 
						
							| 25 | 24 | exlimiv |  |-  ( E. y ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) ) | 
						
							| 26 | 2 25 | mpcom |  |-  ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) |