| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infpssrlem.a |  |-  ( ph -> B C_ A ) | 
						
							| 2 |  | infpssrlem.c |  |-  ( ph -> F : B -1-1-onto-> A ) | 
						
							| 3 |  | infpssrlem.d |  |-  ( ph -> C e. ( A \ B ) ) | 
						
							| 4 |  | infpssrlem.e |  |-  G = ( rec ( `' F , C ) |` _om ) | 
						
							| 5 |  | frsuc |  |-  ( M e. _om -> ( ( rec ( `' F , C ) |` _om ) ` suc M ) = ( `' F ` ( ( rec ( `' F , C ) |` _om ) ` M ) ) ) | 
						
							| 6 | 4 | fveq1i |  |-  ( G ` suc M ) = ( ( rec ( `' F , C ) |` _om ) ` suc M ) | 
						
							| 7 | 4 | fveq1i |  |-  ( G ` M ) = ( ( rec ( `' F , C ) |` _om ) ` M ) | 
						
							| 8 | 7 | fveq2i |  |-  ( `' F ` ( G ` M ) ) = ( `' F ` ( ( rec ( `' F , C ) |` _om ) ` M ) ) | 
						
							| 9 | 5 6 8 | 3eqtr4g |  |-  ( M e. _om -> ( G ` suc M ) = ( `' F ` ( G ` M ) ) ) |