Metamath Proof Explorer


Theorem infpwfidom

Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption ( ~P A i^i Fin ) e. _V because this theorem also implies that A is a set if ~P A i^i Fin is.) (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion infpwfidom
|- ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) )

Proof

Step Hyp Ref Expression
1 snelpwi
 |-  ( x e. A -> { x } e. ~P A )
2 snfi
 |-  { x } e. Fin
3 2 a1i
 |-  ( x e. A -> { x } e. Fin )
4 1 3 elind
 |-  ( x e. A -> { x } e. ( ~P A i^i Fin ) )
5 sneqbg
 |-  ( x e. A -> ( { x } = { y } <-> x = y ) )
6 5 adantr
 |-  ( ( x e. A /\ y e. A ) -> ( { x } = { y } <-> x = y ) )
7 4 6 dom2
 |-  ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) )