Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption ( ~P A i^i Fin ) e. _V because this theorem also implies that A is a set if ~P A i^i Fin is.) (Contributed by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infpwfidom | |- ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelpwi | |- ( x e. A -> { x } e. ~P A ) |
|
2 | snfi | |- { x } e. Fin |
|
3 | 2 | a1i | |- ( x e. A -> { x } e. Fin ) |
4 | 1 3 | elind | |- ( x e. A -> { x } e. ( ~P A i^i Fin ) ) |
5 | sneqbg | |- ( x e. A -> ( { x } = { y } <-> x = y ) ) |
|
6 | 5 | adantr | |- ( ( x e. A /\ y e. A ) -> ( { x } = { y } <-> x = y ) ) |
7 | 4 6 | dom2 | |- ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) ) |