Metamath Proof Explorer


Theorem infrecl

Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrecl
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR )

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 1 a1i
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> < Or RR )
3 infm3
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) )
4 2 3 infcl
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR )