Metamath Proof Explorer


Theorem infrglb

Description: The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Assertion infrglb
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( inf ( A , RR , < ) < B <-> E. z e. A z < B ) )

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 1 a1i
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> < Or RR )
3 infm3
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) )
4 simp1
 |-  ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR )
5 2 3 4 infglbb
 |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) /\ B e. RR ) -> ( inf ( A , RR , < ) < B <-> E. z e. A z < B ) )