Step |
Hyp |
Ref |
Expression |
1 |
|
infrpgernmpt.x |
|- F/ x ph |
2 |
|
infrpgernmpt.a |
|- ( ph -> A =/= (/) ) |
3 |
|
infrpgernmpt.b |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
4 |
|
infrpgernmpt.y |
|- ( ph -> E. y e. RR A. x e. A y <_ B ) |
5 |
|
infrpgernmpt.c |
|- ( ph -> C e. RR+ ) |
6 |
|
nfv |
|- F/ w ph |
7 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
8 |
1 7 3
|
rnmptssd |
|- ( ph -> ran ( x e. A |-> B ) C_ RR* ) |
9 |
1 3 7 2
|
rnmptn0 |
|- ( ph -> ran ( x e. A |-> B ) =/= (/) ) |
10 |
|
breq1 |
|- ( y = w -> ( y <_ B <-> w <_ B ) ) |
11 |
10
|
ralbidv |
|- ( y = w -> ( A. x e. A y <_ B <-> A. x e. A w <_ B ) ) |
12 |
11
|
cbvrexvw |
|- ( E. y e. RR A. x e. A y <_ B <-> E. w e. RR A. x e. A w <_ B ) |
13 |
4 12
|
sylib |
|- ( ph -> E. w e. RR A. x e. A w <_ B ) |
14 |
13
|
rnmptlb |
|- ( ph -> E. w e. RR A. z e. ran ( x e. A |-> B ) w <_ z ) |
15 |
6 8 9 14 5
|
infrpge |
|- ( ph -> E. w e. ran ( x e. A |-> B ) w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
16 |
|
simpll |
|- ( ( ( ph /\ w e. ran ( x e. A |-> B ) ) /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> ph ) |
17 |
|
simpr |
|- ( ( ( ph /\ w e. ran ( x e. A |-> B ) ) /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
18 |
|
vex |
|- w e. _V |
19 |
7
|
elrnmpt |
|- ( w e. _V -> ( w e. ran ( x e. A |-> B ) <-> E. x e. A w = B ) ) |
20 |
18 19
|
ax-mp |
|- ( w e. ran ( x e. A |-> B ) <-> E. x e. A w = B ) |
21 |
20
|
biimpi |
|- ( w e. ran ( x e. A |-> B ) -> E. x e. A w = B ) |
22 |
21
|
ad2antlr |
|- ( ( ( ph /\ w e. ran ( x e. A |-> B ) ) /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> E. x e. A w = B ) |
23 |
|
nfcv |
|- F/_ x w |
24 |
|
nfcv |
|- F/_ x <_ |
25 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
26 |
25
|
nfrn |
|- F/_ x ran ( x e. A |-> B ) |
27 |
|
nfcv |
|- F/_ x RR* |
28 |
|
nfcv |
|- F/_ x < |
29 |
26 27 28
|
nfinf |
|- F/_ x inf ( ran ( x e. A |-> B ) , RR* , < ) |
30 |
|
nfcv |
|- F/_ x +e |
31 |
|
nfcv |
|- F/_ x C |
32 |
29 30 31
|
nfov |
|- F/_ x ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) |
33 |
23 24 32
|
nfbr |
|- F/ x w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) |
34 |
1 33
|
nfan |
|- F/ x ( ph /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
35 |
|
id |
|- ( w = B -> w = B ) |
36 |
35
|
eqcomd |
|- ( w = B -> B = w ) |
37 |
36
|
adantl |
|- ( ( w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) /\ w = B ) -> B = w ) |
38 |
|
simpl |
|- ( ( w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) /\ w = B ) -> w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
39 |
37 38
|
eqbrtrd |
|- ( ( w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) /\ w = B ) -> B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
40 |
39
|
ex |
|- ( w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) -> ( w = B -> B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) ) |
41 |
40
|
a1d |
|- ( w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) -> ( x e. A -> ( w = B -> B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> ( x e. A -> ( w = B -> B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) ) ) |
43 |
34 42
|
reximdai |
|- ( ( ph /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> ( E. x e. A w = B -> E. x e. A B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) ) |
44 |
43
|
imp |
|- ( ( ( ph /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) /\ E. x e. A w = B ) -> E. x e. A B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
45 |
16 17 22 44
|
syl21anc |
|- ( ( ( ph /\ w e. ran ( x e. A |-> B ) ) /\ w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) -> E. x e. A B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |
46 |
45
|
rexlimdva2 |
|- ( ph -> ( E. w e. ran ( x e. A |-> B ) w <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) -> E. x e. A B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) ) |
47 |
15 46
|
mpd |
|- ( ph -> E. x e. A B <_ ( inf ( ran ( x e. A |-> B ) , RR* , < ) +e C ) ) |