Metamath Proof Explorer


Theorem infssuzcl

Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzcl
|- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> inf ( S , RR , < ) e. S )

Proof

Step Hyp Ref Expression
1 uzssz
 |-  ( ZZ>= ` M ) C_ ZZ
2 zssre
 |-  ZZ C_ RR
3 1 2 sstri
 |-  ( ZZ>= ` M ) C_ RR
4 sstr
 |-  ( ( S C_ ( ZZ>= ` M ) /\ ( ZZ>= ` M ) C_ RR ) -> S C_ RR )
5 3 4 mpan2
 |-  ( S C_ ( ZZ>= ` M ) -> S C_ RR )
6 uzwo
 |-  ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E. j e. S A. k e. S j <_ k )
7 lbinfcl
 |-  ( ( S C_ RR /\ E. j e. S A. k e. S j <_ k ) -> inf ( S , RR , < ) e. S )
8 5 6 7 syl2an2r
 |-  ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> inf ( S , RR , < ) e. S )