Step |
Hyp |
Ref |
Expression |
1 |
|
solin |
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |
2 |
1
|
3adantr3 |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C \/ B = C \/ C R B ) ) |
3 |
|
iftrue |
|- ( B R C -> if ( B R C , B , C ) = B ) |
4 |
3
|
adantr |
|- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) = B ) |
5 |
|
sotric |
|- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |
6 |
5
|
3adantr3 |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) |
7 |
6
|
biimpac |
|- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( B = C \/ C R B ) ) |
8 |
|
ioran |
|- ( -. ( B = C \/ C R B ) <-> ( -. B = C /\ -. C R B ) ) |
9 |
|
simprl |
|- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R C ) |
10 |
|
iffalse |
|- ( -. C R B -> if ( C R B , B , C ) = C ) |
11 |
10
|
adantr |
|- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> if ( C R B , B , C ) = C ) |
12 |
9 11
|
breqtrrd |
|- ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R if ( C R B , B , C ) ) |
13 |
12
|
ex |
|- ( -. C R B -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) |
14 |
8 13
|
simplbiim |
|- ( -. ( B = C \/ C R B ) -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) |
15 |
7 14
|
mpcom |
|- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) |
16 |
4 15
|
eqbrtrd |
|- ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
17 |
16
|
ex |
|- ( B R C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
18 |
|
eqneqall |
|- ( B = C -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
19 |
18
|
2a1d |
|- ( B = C -> ( B e. A -> ( C e. A -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) ) ) |
20 |
19
|
3impd |
|- ( B = C -> ( ( B e. A /\ C e. A /\ B =/= C ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
21 |
20
|
adantld |
|- ( B = C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
22 |
|
pm3.22 |
|- ( ( B e. A /\ C e. A ) -> ( C e. A /\ B e. A ) ) |
23 |
22
|
3adant3 |
|- ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ B e. A ) ) |
24 |
|
sotric |
|- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) |
25 |
24
|
biimpd |
|- ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) |
26 |
23 25
|
sylan2 |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) |
27 |
26
|
impcom |
|- ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( C = B \/ B R C ) ) |
28 |
|
ioran |
|- ( -. ( C = B \/ B R C ) <-> ( -. C = B /\ -. B R C ) ) |
29 |
|
simpr |
|- ( ( -. B R C /\ C R B ) -> C R B ) |
30 |
|
iffalse |
|- ( -. B R C -> if ( B R C , B , C ) = C ) |
31 |
|
iftrue |
|- ( C R B -> if ( C R B , B , C ) = B ) |
32 |
30 31
|
breqan12d |
|- ( ( -. B R C /\ C R B ) -> ( if ( B R C , B , C ) R if ( C R B , B , C ) <-> C R B ) ) |
33 |
29 32
|
mpbird |
|- ( ( -. B R C /\ C R B ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
34 |
33
|
a1d |
|- ( ( -. B R C /\ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
35 |
34
|
expimpd |
|- ( -. B R C -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
36 |
28 35
|
simplbiim |
|- ( -. ( C = B \/ B R C ) -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
37 |
27 36
|
mpcom |
|- ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
38 |
37
|
ex |
|- ( C R B -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
39 |
17 21 38
|
3jaoi |
|- ( ( B R C \/ B = C \/ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
40 |
2 39
|
mpcom |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) |
41 |
|
infpr |
|- ( ( R Or A /\ B e. A /\ C e. A ) -> inf ( { B , C } , A , R ) = if ( B R C , B , C ) ) |
42 |
|
suppr |
|- ( ( R Or A /\ B e. A /\ C e. A ) -> sup ( { B , C } , A , R ) = if ( C R B , B , C ) ) |
43 |
41 42
|
breq12d |
|- ( ( R Or A /\ B e. A /\ C e. A ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
44 |
43
|
3adant3r3 |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) |
45 |
40 44
|
mpbird |
|- ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) ) |