| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A e. dom card ) |
| 2 |
|
reldom |
|- Rel ~<_ |
| 3 |
2
|
brrelex1i |
|- ( B ~<_ A -> B e. _V ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B e. _V ) |
| 5 |
|
undjudom |
|- ( ( A e. dom card /\ B e. _V ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 6 |
1 4 5
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 7 |
|
infdjuabs |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~~ A ) |
| 8 |
|
domentr |
|- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ A ) -> ( A u. B ) ~<_ A ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~<_ A ) |
| 10 |
|
unexg |
|- ( ( A e. dom card /\ B e. _V ) -> ( A u. B ) e. _V ) |
| 11 |
1 4 10
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) e. _V ) |
| 12 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 13 |
|
ssdomg |
|- ( ( A u. B ) e. _V -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
| 14 |
11 12 13
|
mpisyl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A ~<_ ( A u. B ) ) |
| 15 |
|
sbth |
|- ( ( ( A u. B ) ~<_ A /\ A ~<_ ( A u. B ) ) -> ( A u. B ) ~~ A ) |
| 16 |
9 14 15
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~~ A ) |