| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> A ~<_ B ) |
| 2 |
|
domsdomtr |
|- ( ( A ~<_ B /\ B ~< _om ) -> A ~< _om ) |
| 3 |
1 2
|
sylan |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> A ~< _om ) |
| 4 |
|
unfi2 |
|- ( ( A ~< _om /\ B ~< _om ) -> ( A u. B ) ~< _om ) |
| 5 |
3 4
|
sylancom |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> ( A u. B ) ~< _om ) |
| 6 |
|
simpllr |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> _om ~<_ X ) |
| 7 |
|
sdomdomtr |
|- ( ( ( A u. B ) ~< _om /\ _om ~<_ X ) -> ( A u. B ) ~< X ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ B ~< _om ) -> ( A u. B ) ~< X ) |
| 9 |
|
omelon |
|- _om e. On |
| 10 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
| 11 |
9 10
|
ax-mp |
|- _om e. dom card |
| 12 |
|
simpll |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> X e. dom card ) |
| 13 |
|
sdomdom |
|- ( B ~< X -> B ~<_ X ) |
| 14 |
13
|
ad2antll |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> B ~<_ X ) |
| 15 |
|
numdom |
|- ( ( X e. dom card /\ B ~<_ X ) -> B e. dom card ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> B e. dom card ) |
| 17 |
|
domtri2 |
|- ( ( _om e. dom card /\ B e. dom card ) -> ( _om ~<_ B <-> -. B ~< _om ) ) |
| 18 |
11 16 17
|
sylancr |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( _om ~<_ B <-> -. B ~< _om ) ) |
| 19 |
18
|
biimpar |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ -. B ~< _om ) -> _om ~<_ B ) |
| 20 |
|
uncom |
|- ( A u. B ) = ( B u. A ) |
| 21 |
16
|
adantr |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> B e. dom card ) |
| 22 |
|
simpr |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> _om ~<_ B ) |
| 23 |
1
|
adantr |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> A ~<_ B ) |
| 24 |
|
infunabs |
|- ( ( B e. dom card /\ _om ~<_ B /\ A ~<_ B ) -> ( B u. A ) ~~ B ) |
| 25 |
21 22 23 24
|
syl3anc |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( B u. A ) ~~ B ) |
| 26 |
20 25
|
eqbrtrid |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( A u. B ) ~~ B ) |
| 27 |
|
simplrr |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> B ~< X ) |
| 28 |
|
ensdomtr |
|- ( ( ( A u. B ) ~~ B /\ B ~< X ) -> ( A u. B ) ~< X ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ _om ~<_ B ) -> ( A u. B ) ~< X ) |
| 30 |
19 29
|
syldan |
|- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) /\ -. B ~< _om ) -> ( A u. B ) ~< X ) |
| 31 |
8 30
|
pm2.61dan |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( A u. B ) ~< X ) |