Step |
Hyp |
Ref |
Expression |
1 |
|
infxpdom |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ A ) |
2 |
1
|
3expa |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ B ~<_ A ) -> ( A X. B ) ~<_ A ) |
3 |
2
|
adantrl |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~<_ A ) |
4 |
|
simpll |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> A e. dom card ) |
5 |
|
numdom |
|- ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card ) |
6 |
5
|
ad2ant2rl |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> B e. dom card ) |
7 |
|
simprl |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> B =/= (/) ) |
8 |
|
xpdom3 |
|- ( ( A e. dom card /\ B e. dom card /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |
9 |
4 6 7 8
|
syl3anc |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> A ~<_ ( A X. B ) ) |
10 |
|
sbth |
|- ( ( ( A X. B ) ~<_ A /\ A ~<_ ( A X. B ) ) -> ( A X. B ) ~~ A ) |
11 |
3 9 10
|
syl2anc |
|- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~~ A ) |