| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpdom2g |
|- ( ( A e. dom card /\ B ~<_ A ) -> ( A X. B ) ~<_ ( A X. A ) ) |
| 2 |
1
|
3adant2 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ ( A X. A ) ) |
| 3 |
|
infxpidm2 |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
| 4 |
3
|
3adant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. A ) ~~ A ) |
| 5 |
|
domentr |
|- ( ( ( A X. B ) ~<_ ( A X. A ) /\ ( A X. A ) ~~ A ) -> ( A X. B ) ~<_ A ) |
| 6 |
2 4 5
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ A ) |