Metamath Proof Explorer


Theorem infxpdom

Description: Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxpdom
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ A )

Proof

Step Hyp Ref Expression
1 xpdom2g
 |-  ( ( A e. dom card /\ B ~<_ A ) -> ( A X. B ) ~<_ ( A X. A ) )
2 1 3adant2
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ ( A X. A ) )
3 infxpidm2
 |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A )
4 3 3adant3
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. A ) ~~ A )
5 domentr
 |-  ( ( ( A X. B ) ~<_ ( A X. A ) /\ ( A X. A ) ~~ A ) -> ( A X. B ) ~<_ A )
6 2 4 5 syl2anc
 |-  ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. B ) ~<_ A )