Step |
Hyp |
Ref |
Expression |
1 |
|
leweon.1 |
|- L = { <. x , y >. | ( ( x e. ( On X. On ) /\ y e. ( On X. On ) ) /\ ( ( 1st ` x ) e. ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) e. ( 2nd ` y ) ) ) ) } |
2 |
|
r0weon.1 |
|- R = { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } |
3 |
|
infxpen.1 |
|- Q = ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) |
4 |
|
infxpen.2 |
|- ( ph <-> ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) ) |
5 |
|
infxpen.3 |
|- M = ( ( 1st ` w ) u. ( 2nd ` w ) ) |
6 |
|
infxpen.4 |
|- J = OrdIso ( Q , ( a X. a ) ) |
7 |
|
sseq2 |
|- ( a = m -> ( _om C_ a <-> _om C_ m ) ) |
8 |
|
xpeq12 |
|- ( ( a = m /\ a = m ) -> ( a X. a ) = ( m X. m ) ) |
9 |
8
|
anidms |
|- ( a = m -> ( a X. a ) = ( m X. m ) ) |
10 |
|
id |
|- ( a = m -> a = m ) |
11 |
9 10
|
breq12d |
|- ( a = m -> ( ( a X. a ) ~~ a <-> ( m X. m ) ~~ m ) ) |
12 |
7 11
|
imbi12d |
|- ( a = m -> ( ( _om C_ a -> ( a X. a ) ~~ a ) <-> ( _om C_ m -> ( m X. m ) ~~ m ) ) ) |
13 |
|
sseq2 |
|- ( a = A -> ( _om C_ a <-> _om C_ A ) ) |
14 |
|
xpeq12 |
|- ( ( a = A /\ a = A ) -> ( a X. a ) = ( A X. A ) ) |
15 |
14
|
anidms |
|- ( a = A -> ( a X. a ) = ( A X. A ) ) |
16 |
|
id |
|- ( a = A -> a = A ) |
17 |
15 16
|
breq12d |
|- ( a = A -> ( ( a X. a ) ~~ a <-> ( A X. A ) ~~ A ) ) |
18 |
13 17
|
imbi12d |
|- ( a = A -> ( ( _om C_ a -> ( a X. a ) ~~ a ) <-> ( _om C_ A -> ( A X. A ) ~~ A ) ) ) |
19 |
|
vex |
|- a e. _V |
20 |
19 19
|
xpex |
|- ( a X. a ) e. _V |
21 |
|
simpll |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> a e. On ) |
22 |
4 21
|
sylbi |
|- ( ph -> a e. On ) |
23 |
|
onss |
|- ( a e. On -> a C_ On ) |
24 |
22 23
|
syl |
|- ( ph -> a C_ On ) |
25 |
|
xpss12 |
|- ( ( a C_ On /\ a C_ On ) -> ( a X. a ) C_ ( On X. On ) ) |
26 |
24 24 25
|
syl2anc |
|- ( ph -> ( a X. a ) C_ ( On X. On ) ) |
27 |
1 2
|
r0weon |
|- ( R We ( On X. On ) /\ R Se ( On X. On ) ) |
28 |
27
|
simpli |
|- R We ( On X. On ) |
29 |
|
wess |
|- ( ( a X. a ) C_ ( On X. On ) -> ( R We ( On X. On ) -> R We ( a X. a ) ) ) |
30 |
26 28 29
|
mpisyl |
|- ( ph -> R We ( a X. a ) ) |
31 |
|
weinxp |
|- ( R We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
32 |
30 31
|
sylib |
|- ( ph -> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
33 |
|
weeq1 |
|- ( Q = ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) -> ( Q We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) ) |
34 |
3 33
|
ax-mp |
|- ( Q We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
35 |
32 34
|
sylibr |
|- ( ph -> Q We ( a X. a ) ) |
36 |
6
|
oiiso |
|- ( ( ( a X. a ) e. _V /\ Q We ( a X. a ) ) -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
37 |
20 35 36
|
sylancr |
|- ( ph -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
38 |
|
isof1o |
|- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> J : dom J -1-1-onto-> ( a X. a ) ) |
39 |
|
f1ocnv |
|- ( J : dom J -1-1-onto-> ( a X. a ) -> `' J : ( a X. a ) -1-1-onto-> dom J ) |
40 |
|
f1of1 |
|- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J : ( a X. a ) -1-1-> dom J ) |
41 |
37 38 39 40
|
4syl |
|- ( ph -> `' J : ( a X. a ) -1-1-> dom J ) |
42 |
|
f1f1orn |
|- ( `' J : ( a X. a ) -1-1-> dom J -> `' J : ( a X. a ) -1-1-onto-> ran `' J ) |
43 |
20
|
f1oen |
|- ( `' J : ( a X. a ) -1-1-onto-> ran `' J -> ( a X. a ) ~~ ran `' J ) |
44 |
41 42 43
|
3syl |
|- ( ph -> ( a X. a ) ~~ ran `' J ) |
45 |
|
f1ofn |
|- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J Fn ( a X. a ) ) |
46 |
37 38 39 45
|
4syl |
|- ( ph -> `' J Fn ( a X. a ) ) |
47 |
37
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
48 |
38 39 40
|
3syl |
|- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> `' J : ( a X. a ) -1-1-> dom J ) |
49 |
|
cnvimass |
|- ( `' Q " { w } ) C_ dom Q |
50 |
|
inss2 |
|- ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) C_ ( ( a X. a ) X. ( a X. a ) ) |
51 |
3 50
|
eqsstri |
|- Q C_ ( ( a X. a ) X. ( a X. a ) ) |
52 |
|
dmss |
|- ( Q C_ ( ( a X. a ) X. ( a X. a ) ) -> dom Q C_ dom ( ( a X. a ) X. ( a X. a ) ) ) |
53 |
51 52
|
ax-mp |
|- dom Q C_ dom ( ( a X. a ) X. ( a X. a ) ) |
54 |
|
dmxpid |
|- dom ( ( a X. a ) X. ( a X. a ) ) = ( a X. a ) |
55 |
53 54
|
sseqtri |
|- dom Q C_ ( a X. a ) |
56 |
49 55
|
sstri |
|- ( `' Q " { w } ) C_ ( a X. a ) |
57 |
|
f1ores |
|- ( ( `' J : ( a X. a ) -1-1-> dom J /\ ( `' Q " { w } ) C_ ( a X. a ) ) -> ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) ) |
58 |
48 56 57
|
sylancl |
|- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) ) |
59 |
20 20
|
xpex |
|- ( ( a X. a ) X. ( a X. a ) ) e. _V |
60 |
59
|
inex2 |
|- ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) e. _V |
61 |
3 60
|
eqeltri |
|- Q e. _V |
62 |
61
|
cnvex |
|- `' Q e. _V |
63 |
62
|
imaex |
|- ( `' Q " { w } ) e. _V |
64 |
63
|
f1oen |
|- ( ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) -> ( `' Q " { w } ) ~~ ( `' J " ( `' Q " { w } ) ) ) |
65 |
47 58 64
|
3syl |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~~ ( `' J " ( `' Q " { w } ) ) ) |
66 |
|
sseqin2 |
|- ( ( `' Q " { w } ) C_ ( a X. a ) <-> ( ( a X. a ) i^i ( `' Q " { w } ) ) = ( `' Q " { w } ) ) |
67 |
56 66
|
mpbi |
|- ( ( a X. a ) i^i ( `' Q " { w } ) ) = ( `' Q " { w } ) |
68 |
67
|
imaeq2i |
|- ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( `' J " ( `' Q " { w } ) ) |
69 |
|
isocnv |
|- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> `' J Isom Q , _E ( ( a X. a ) , dom J ) ) |
70 |
47 69
|
syl |
|- ( ( ph /\ w e. ( a X. a ) ) -> `' J Isom Q , _E ( ( a X. a ) , dom J ) ) |
71 |
|
simpr |
|- ( ( ph /\ w e. ( a X. a ) ) -> w e. ( a X. a ) ) |
72 |
|
isoini |
|- ( ( `' J Isom Q , _E ( ( a X. a ) , dom J ) /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) ) |
73 |
70 71 72
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) ) |
74 |
|
fvex |
|- ( `' J ` w ) e. _V |
75 |
74
|
epini |
|- ( `' _E " { ( `' J ` w ) } ) = ( `' J ` w ) |
76 |
75
|
ineq2i |
|- ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) = ( dom J i^i ( `' J ` w ) ) |
77 |
6
|
oicl |
|- Ord dom J |
78 |
|
f1of |
|- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J : ( a X. a ) --> dom J ) |
79 |
37 38 39 78
|
4syl |
|- ( ph -> `' J : ( a X. a ) --> dom J ) |
80 |
79
|
ffvelrnda |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. dom J ) |
81 |
|
ordelss |
|- ( ( Ord dom J /\ ( `' J ` w ) e. dom J ) -> ( `' J ` w ) C_ dom J ) |
82 |
77 80 81
|
sylancr |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) C_ dom J ) |
83 |
|
sseqin2 |
|- ( ( `' J ` w ) C_ dom J <-> ( dom J i^i ( `' J ` w ) ) = ( `' J ` w ) ) |
84 |
82 83
|
sylib |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( dom J i^i ( `' J ` w ) ) = ( `' J ` w ) ) |
85 |
76 84
|
eqtrid |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) = ( `' J ` w ) ) |
86 |
73 85
|
eqtrd |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( `' J ` w ) ) |
87 |
68 86
|
eqtr3id |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( `' Q " { w } ) ) = ( `' J ` w ) ) |
88 |
65 87
|
breqtrd |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~~ ( `' J ` w ) ) |
89 |
88
|
ensymd |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) ~~ ( `' Q " { w } ) ) |
90 |
|
fvex |
|- ( 1st ` w ) e. _V |
91 |
|
fvex |
|- ( 2nd ` w ) e. _V |
92 |
90 91
|
unex |
|- ( ( 1st ` w ) u. ( 2nd ` w ) ) e. _V |
93 |
5 92
|
eqeltri |
|- M e. _V |
94 |
93
|
sucex |
|- suc M e. _V |
95 |
94 94
|
xpex |
|- ( suc M X. suc M ) e. _V |
96 |
|
xpss |
|- ( a X. a ) C_ ( _V X. _V ) |
97 |
|
simp3 |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( `' Q " { w } ) ) |
98 |
|
vex |
|- z e. _V |
99 |
98
|
eliniseg |
|- ( w e. _V -> ( z e. ( `' Q " { w } ) <-> z Q w ) ) |
100 |
99
|
elv |
|- ( z e. ( `' Q " { w } ) <-> z Q w ) |
101 |
97 100
|
sylib |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z Q w ) |
102 |
3
|
breqi |
|- ( z Q w <-> z ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) w ) |
103 |
|
brin |
|- ( z ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) w <-> ( z R w /\ z ( ( a X. a ) X. ( a X. a ) ) w ) ) |
104 |
102 103
|
bitri |
|- ( z Q w <-> ( z R w /\ z ( ( a X. a ) X. ( a X. a ) ) w ) ) |
105 |
104
|
simprbi |
|- ( z Q w -> z ( ( a X. a ) X. ( a X. a ) ) w ) |
106 |
|
brxp |
|- ( z ( ( a X. a ) X. ( a X. a ) ) w <-> ( z e. ( a X. a ) /\ w e. ( a X. a ) ) ) |
107 |
106
|
simplbi |
|- ( z ( ( a X. a ) X. ( a X. a ) ) w -> z e. ( a X. a ) ) |
108 |
101 105 107
|
3syl |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( a X. a ) ) |
109 |
96 108
|
sselid |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( _V X. _V ) ) |
110 |
22
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> a e. On ) |
111 |
110
|
3adant3 |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> a e. On ) |
112 |
|
xp1st |
|- ( z e. ( a X. a ) -> ( 1st ` z ) e. a ) |
113 |
|
onelon |
|- ( ( a e. On /\ ( 1st ` z ) e. a ) -> ( 1st ` z ) e. On ) |
114 |
112 113
|
sylan2 |
|- ( ( a e. On /\ z e. ( a X. a ) ) -> ( 1st ` z ) e. On ) |
115 |
111 108 114
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) e. On ) |
116 |
|
eloni |
|- ( a e. On -> Ord a ) |
117 |
|
elxp7 |
|- ( w e. ( a X. a ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) ) ) |
118 |
117
|
simprbi |
|- ( w e. ( a X. a ) -> ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) ) |
119 |
|
ordunel |
|- ( ( Ord a /\ ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) |
120 |
119
|
3expib |
|- ( Ord a -> ( ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) ) |
121 |
116 118 120
|
syl2im |
|- ( a e. On -> ( w e. ( a X. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) ) |
122 |
110 71 121
|
sylc |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) |
123 |
5 122
|
eqeltrid |
|- ( ( ph /\ w e. ( a X. a ) ) -> M e. a ) |
124 |
|
simprr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> A. m e. a m ~< a ) |
125 |
4 124
|
sylbi |
|- ( ph -> A. m e. a m ~< a ) |
126 |
|
simprl |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> _om C_ a ) |
127 |
4 126
|
sylbi |
|- ( ph -> _om C_ a ) |
128 |
|
iscard |
|- ( ( card ` a ) = a <-> ( a e. On /\ A. m e. a m ~< a ) ) |
129 |
|
cardlim |
|- ( _om C_ ( card ` a ) <-> Lim ( card ` a ) ) |
130 |
|
sseq2 |
|- ( ( card ` a ) = a -> ( _om C_ ( card ` a ) <-> _om C_ a ) ) |
131 |
|
limeq |
|- ( ( card ` a ) = a -> ( Lim ( card ` a ) <-> Lim a ) ) |
132 |
130 131
|
bibi12d |
|- ( ( card ` a ) = a -> ( ( _om C_ ( card ` a ) <-> Lim ( card ` a ) ) <-> ( _om C_ a <-> Lim a ) ) ) |
133 |
129 132
|
mpbii |
|- ( ( card ` a ) = a -> ( _om C_ a <-> Lim a ) ) |
134 |
128 133
|
sylbir |
|- ( ( a e. On /\ A. m e. a m ~< a ) -> ( _om C_ a <-> Lim a ) ) |
135 |
134
|
biimpa |
|- ( ( ( a e. On /\ A. m e. a m ~< a ) /\ _om C_ a ) -> Lim a ) |
136 |
22 125 127 135
|
syl21anc |
|- ( ph -> Lim a ) |
137 |
136
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> Lim a ) |
138 |
|
limsuc |
|- ( Lim a -> ( M e. a <-> suc M e. a ) ) |
139 |
137 138
|
syl |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( M e. a <-> suc M e. a ) ) |
140 |
123 139
|
mpbid |
|- ( ( ph /\ w e. ( a X. a ) ) -> suc M e. a ) |
141 |
|
onelon |
|- ( ( a e. On /\ suc M e. a ) -> suc M e. On ) |
142 |
22 140 141
|
syl2an2r |
|- ( ( ph /\ w e. ( a X. a ) ) -> suc M e. On ) |
143 |
142
|
3adant3 |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> suc M e. On ) |
144 |
|
ssun1 |
|- ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) |
145 |
144
|
a1i |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
146 |
104
|
simplbi |
|- ( z Q w -> z R w ) |
147 |
|
df-br |
|- ( z R w <-> <. z , w >. e. R ) |
148 |
2
|
eleq2i |
|- ( <. z , w >. e. R <-> <. z , w >. e. { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } ) |
149 |
|
opabidw |
|- ( <. z , w >. e. { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } <-> ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) ) |
150 |
147 148 149
|
3bitri |
|- ( z R w <-> ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) ) |
151 |
150
|
simprbi |
|- ( z R w -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) |
152 |
|
simpl |
|- ( ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
153 |
152
|
orim2i |
|- ( ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
154 |
151 153
|
syl |
|- ( z R w -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
155 |
|
fvex |
|- ( 1st ` z ) e. _V |
156 |
|
fvex |
|- ( 2nd ` z ) e. _V |
157 |
155 156
|
unex |
|- ( ( 1st ` z ) u. ( 2nd ` z ) ) e. _V |
158 |
157
|
elsuc |
|- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc ( ( 1st ` w ) u. ( 2nd ` w ) ) <-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
159 |
154 158
|
sylibr |
|- ( z R w -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
160 |
|
suceq |
|- ( M = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> suc M = suc ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
161 |
5 160
|
ax-mp |
|- suc M = suc ( ( 1st ` w ) u. ( 2nd ` w ) ) |
162 |
159 161
|
eleqtrrdi |
|- ( z R w -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) |
163 |
101 146 162
|
3syl |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) |
164 |
|
ontr2 |
|- ( ( ( 1st ` z ) e. On /\ suc M e. On ) -> ( ( ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) -> ( 1st ` z ) e. suc M ) ) |
165 |
164
|
imp |
|- ( ( ( ( 1st ` z ) e. On /\ suc M e. On ) /\ ( ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) ) -> ( 1st ` z ) e. suc M ) |
166 |
115 143 145 163 165
|
syl22anc |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) e. suc M ) |
167 |
|
xp2nd |
|- ( z e. ( a X. a ) -> ( 2nd ` z ) e. a ) |
168 |
|
onelon |
|- ( ( a e. On /\ ( 2nd ` z ) e. a ) -> ( 2nd ` z ) e. On ) |
169 |
167 168
|
sylan2 |
|- ( ( a e. On /\ z e. ( a X. a ) ) -> ( 2nd ` z ) e. On ) |
170 |
111 108 169
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) e. On ) |
171 |
|
ssun2 |
|- ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) |
172 |
171
|
a1i |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
173 |
|
ontr2 |
|- ( ( ( 2nd ` z ) e. On /\ suc M e. On ) -> ( ( ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) -> ( 2nd ` z ) e. suc M ) ) |
174 |
173
|
imp |
|- ( ( ( ( 2nd ` z ) e. On /\ suc M e. On ) /\ ( ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) ) -> ( 2nd ` z ) e. suc M ) |
175 |
170 143 172 163 174
|
syl22anc |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) e. suc M ) |
176 |
|
elxp7 |
|- ( z e. ( suc M X. suc M ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. suc M /\ ( 2nd ` z ) e. suc M ) ) ) |
177 |
176
|
biimpri |
|- ( ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. suc M /\ ( 2nd ` z ) e. suc M ) ) -> z e. ( suc M X. suc M ) ) |
178 |
109 166 175 177
|
syl12anc |
|- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( suc M X. suc M ) ) |
179 |
178
|
3expia |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( z e. ( `' Q " { w } ) -> z e. ( suc M X. suc M ) ) ) |
180 |
179
|
ssrdv |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) C_ ( suc M X. suc M ) ) |
181 |
|
ssdomg |
|- ( ( suc M X. suc M ) e. _V -> ( ( `' Q " { w } ) C_ ( suc M X. suc M ) -> ( `' Q " { w } ) ~<_ ( suc M X. suc M ) ) ) |
182 |
95 180 181
|
mpsyl |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~<_ ( suc M X. suc M ) ) |
183 |
127
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> _om C_ a ) |
184 |
|
nnfi |
|- ( suc M e. _om -> suc M e. Fin ) |
185 |
|
xpfi |
|- ( ( suc M e. Fin /\ suc M e. Fin ) -> ( suc M X. suc M ) e. Fin ) |
186 |
185
|
anidms |
|- ( suc M e. Fin -> ( suc M X. suc M ) e. Fin ) |
187 |
|
isfinite |
|- ( ( suc M X. suc M ) e. Fin <-> ( suc M X. suc M ) ~< _om ) |
188 |
186 187
|
sylib |
|- ( suc M e. Fin -> ( suc M X. suc M ) ~< _om ) |
189 |
184 188
|
syl |
|- ( suc M e. _om -> ( suc M X. suc M ) ~< _om ) |
190 |
|
ssdomg |
|- ( a e. _V -> ( _om C_ a -> _om ~<_ a ) ) |
191 |
190
|
elv |
|- ( _om C_ a -> _om ~<_ a ) |
192 |
|
sdomdomtr |
|- ( ( ( suc M X. suc M ) ~< _om /\ _om ~<_ a ) -> ( suc M X. suc M ) ~< a ) |
193 |
189 191 192
|
syl2an |
|- ( ( suc M e. _om /\ _om C_ a ) -> ( suc M X. suc M ) ~< a ) |
194 |
193
|
expcom |
|- ( _om C_ a -> ( suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
195 |
183 194
|
syl |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
196 |
|
breq1 |
|- ( m = suc M -> ( m ~< a <-> suc M ~< a ) ) |
197 |
125
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> A. m e. a m ~< a ) |
198 |
196 197 140
|
rspcdva |
|- ( ( ph /\ w e. ( a X. a ) ) -> suc M ~< a ) |
199 |
|
omelon |
|- _om e. On |
200 |
|
ontri1 |
|- ( ( _om e. On /\ suc M e. On ) -> ( _om C_ suc M <-> -. suc M e. _om ) ) |
201 |
199 142 200
|
sylancr |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( _om C_ suc M <-> -. suc M e. _om ) ) |
202 |
|
sseq2 |
|- ( m = suc M -> ( _om C_ m <-> _om C_ suc M ) ) |
203 |
|
xpeq12 |
|- ( ( m = suc M /\ m = suc M ) -> ( m X. m ) = ( suc M X. suc M ) ) |
204 |
203
|
anidms |
|- ( m = suc M -> ( m X. m ) = ( suc M X. suc M ) ) |
205 |
|
id |
|- ( m = suc M -> m = suc M ) |
206 |
204 205
|
breq12d |
|- ( m = suc M -> ( ( m X. m ) ~~ m <-> ( suc M X. suc M ) ~~ suc M ) ) |
207 |
202 206
|
imbi12d |
|- ( m = suc M -> ( ( _om C_ m -> ( m X. m ) ~~ m ) <-> ( _om C_ suc M -> ( suc M X. suc M ) ~~ suc M ) ) ) |
208 |
|
simplr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
209 |
4 208
|
sylbi |
|- ( ph -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
210 |
209
|
adantr |
|- ( ( ph /\ w e. ( a X. a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
211 |
207 210 140
|
rspcdva |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( _om C_ suc M -> ( suc M X. suc M ) ~~ suc M ) ) |
212 |
201 211
|
sylbird |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( -. suc M e. _om -> ( suc M X. suc M ) ~~ suc M ) ) |
213 |
|
ensdomtr |
|- ( ( ( suc M X. suc M ) ~~ suc M /\ suc M ~< a ) -> ( suc M X. suc M ) ~< a ) |
214 |
213
|
expcom |
|- ( suc M ~< a -> ( ( suc M X. suc M ) ~~ suc M -> ( suc M X. suc M ) ~< a ) ) |
215 |
198 212 214
|
sylsyld |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( -. suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
216 |
195 215
|
pm2.61d |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( suc M X. suc M ) ~< a ) |
217 |
|
domsdomtr |
|- ( ( ( `' Q " { w } ) ~<_ ( suc M X. suc M ) /\ ( suc M X. suc M ) ~< a ) -> ( `' Q " { w } ) ~< a ) |
218 |
182 216 217
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~< a ) |
219 |
|
ensdomtr |
|- ( ( ( `' J ` w ) ~~ ( `' Q " { w } ) /\ ( `' Q " { w } ) ~< a ) -> ( `' J ` w ) ~< a ) |
220 |
89 218 219
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) ~< a ) |
221 |
|
ordelon |
|- ( ( Ord dom J /\ ( `' J ` w ) e. dom J ) -> ( `' J ` w ) e. On ) |
222 |
77 80 221
|
sylancr |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. On ) |
223 |
|
onenon |
|- ( a e. On -> a e. dom card ) |
224 |
110 223
|
syl |
|- ( ( ph /\ w e. ( a X. a ) ) -> a e. dom card ) |
225 |
|
cardsdomel |
|- ( ( ( `' J ` w ) e. On /\ a e. dom card ) -> ( ( `' J ` w ) ~< a <-> ( `' J ` w ) e. ( card ` a ) ) ) |
226 |
222 224 225
|
syl2anc |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( ( `' J ` w ) ~< a <-> ( `' J ` w ) e. ( card ` a ) ) ) |
227 |
220 226
|
mpbid |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. ( card ` a ) ) |
228 |
|
eleq2 |
|- ( ( card ` a ) = a -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
229 |
128 228
|
sylbir |
|- ( ( a e. On /\ A. m e. a m ~< a ) -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
230 |
22 197 229
|
syl2an2r |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
231 |
227 230
|
mpbid |
|- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. a ) |
232 |
231
|
ralrimiva |
|- ( ph -> A. w e. ( a X. a ) ( `' J ` w ) e. a ) |
233 |
|
fnfvrnss |
|- ( ( `' J Fn ( a X. a ) /\ A. w e. ( a X. a ) ( `' J ` w ) e. a ) -> ran `' J C_ a ) |
234 |
|
ssdomg |
|- ( a e. _V -> ( ran `' J C_ a -> ran `' J ~<_ a ) ) |
235 |
19 233 234
|
mpsyl |
|- ( ( `' J Fn ( a X. a ) /\ A. w e. ( a X. a ) ( `' J ` w ) e. a ) -> ran `' J ~<_ a ) |
236 |
46 232 235
|
syl2anc |
|- ( ph -> ran `' J ~<_ a ) |
237 |
|
endomtr |
|- ( ( ( a X. a ) ~~ ran `' J /\ ran `' J ~<_ a ) -> ( a X. a ) ~<_ a ) |
238 |
44 236 237
|
syl2anc |
|- ( ph -> ( a X. a ) ~<_ a ) |
239 |
4 238
|
sylbir |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> ( a X. a ) ~<_ a ) |
240 |
|
df1o2 |
|- 1o = { (/) } |
241 |
|
1onn |
|- 1o e. _om |
242 |
240 241
|
eqeltrri |
|- { (/) } e. _om |
243 |
|
nnsdom |
|- ( { (/) } e. _om -> { (/) } ~< _om ) |
244 |
|
sdomdom |
|- ( { (/) } ~< _om -> { (/) } ~<_ _om ) |
245 |
242 243 244
|
mp2b |
|- { (/) } ~<_ _om |
246 |
|
domtr |
|- ( ( { (/) } ~<_ _om /\ _om ~<_ a ) -> { (/) } ~<_ a ) |
247 |
245 191 246
|
sylancr |
|- ( _om C_ a -> { (/) } ~<_ a ) |
248 |
|
0ex |
|- (/) e. _V |
249 |
19 248
|
xpsnen |
|- ( a X. { (/) } ) ~~ a |
250 |
249
|
ensymi |
|- a ~~ ( a X. { (/) } ) |
251 |
19
|
xpdom2 |
|- ( { (/) } ~<_ a -> ( a X. { (/) } ) ~<_ ( a X. a ) ) |
252 |
|
endomtr |
|- ( ( a ~~ ( a X. { (/) } ) /\ ( a X. { (/) } ) ~<_ ( a X. a ) ) -> a ~<_ ( a X. a ) ) |
253 |
250 251 252
|
sylancr |
|- ( { (/) } ~<_ a -> a ~<_ ( a X. a ) ) |
254 |
247 253
|
syl |
|- ( _om C_ a -> a ~<_ ( a X. a ) ) |
255 |
254
|
ad2antrl |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> a ~<_ ( a X. a ) ) |
256 |
|
sbth |
|- ( ( ( a X. a ) ~<_ a /\ a ~<_ ( a X. a ) ) -> ( a X. a ) ~~ a ) |
257 |
239 255 256
|
syl2anc |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> ( a X. a ) ~~ a ) |
258 |
257
|
expr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( A. m e. a m ~< a -> ( a X. a ) ~~ a ) ) |
259 |
|
simplr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
260 |
|
simpll |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> a e. On ) |
261 |
|
simprr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> -. A. m e. a m ~< a ) |
262 |
|
rexnal |
|- ( E. m e. a -. m ~< a <-> -. A. m e. a m ~< a ) |
263 |
|
onelss |
|- ( a e. On -> ( m e. a -> m C_ a ) ) |
264 |
|
ssdomg |
|- ( a e. On -> ( m C_ a -> m ~<_ a ) ) |
265 |
263 264
|
syld |
|- ( a e. On -> ( m e. a -> m ~<_ a ) ) |
266 |
|
bren2 |
|- ( m ~~ a <-> ( m ~<_ a /\ -. m ~< a ) ) |
267 |
266
|
simplbi2 |
|- ( m ~<_ a -> ( -. m ~< a -> m ~~ a ) ) |
268 |
265 267
|
syl6 |
|- ( a e. On -> ( m e. a -> ( -. m ~< a -> m ~~ a ) ) ) |
269 |
268
|
reximdvai |
|- ( a e. On -> ( E. m e. a -. m ~< a -> E. m e. a m ~~ a ) ) |
270 |
262 269
|
syl5bir |
|- ( a e. On -> ( -. A. m e. a m ~< a -> E. m e. a m ~~ a ) ) |
271 |
260 261 270
|
sylc |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> E. m e. a m ~~ a ) |
272 |
|
r19.29 |
|- ( ( A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) /\ E. m e. a m ~~ a ) -> E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) |
273 |
259 271 272
|
syl2anc |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) |
274 |
|
simprl |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> _om C_ a ) |
275 |
|
onelon |
|- ( ( a e. On /\ m e. a ) -> m e. On ) |
276 |
|
ensym |
|- ( m ~~ a -> a ~~ m ) |
277 |
|
domentr |
|- ( ( _om ~<_ a /\ a ~~ m ) -> _om ~<_ m ) |
278 |
191 276 277
|
syl2an |
|- ( ( _om C_ a /\ m ~~ a ) -> _om ~<_ m ) |
279 |
|
domnsym |
|- ( _om ~<_ m -> -. m ~< _om ) |
280 |
|
nnsdom |
|- ( m e. _om -> m ~< _om ) |
281 |
279 280
|
nsyl |
|- ( _om ~<_ m -> -. m e. _om ) |
282 |
|
ontri1 |
|- ( ( _om e. On /\ m e. On ) -> ( _om C_ m <-> -. m e. _om ) ) |
283 |
199 282
|
mpan |
|- ( m e. On -> ( _om C_ m <-> -. m e. _om ) ) |
284 |
281 283
|
syl5ibr |
|- ( m e. On -> ( _om ~<_ m -> _om C_ m ) ) |
285 |
275 278 284
|
syl2im |
|- ( ( a e. On /\ m e. a ) -> ( ( _om C_ a /\ m ~~ a ) -> _om C_ m ) ) |
286 |
285
|
expd |
|- ( ( a e. On /\ m e. a ) -> ( _om C_ a -> ( m ~~ a -> _om C_ m ) ) ) |
287 |
286
|
impcom |
|- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( m ~~ a -> _om C_ m ) ) |
288 |
287
|
imim1d |
|- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( ( _om C_ m -> ( m X. m ) ~~ m ) -> ( m ~~ a -> ( m X. m ) ~~ m ) ) ) |
289 |
288
|
imp32 |
|- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( m X. m ) ~~ m ) |
290 |
|
entr |
|- ( ( ( m X. m ) ~~ m /\ m ~~ a ) -> ( m X. m ) ~~ a ) |
291 |
290
|
ancoms |
|- ( ( m ~~ a /\ ( m X. m ) ~~ m ) -> ( m X. m ) ~~ a ) |
292 |
|
xpen |
|- ( ( a ~~ m /\ a ~~ m ) -> ( a X. a ) ~~ ( m X. m ) ) |
293 |
292
|
anidms |
|- ( a ~~ m -> ( a X. a ) ~~ ( m X. m ) ) |
294 |
|
entr |
|- ( ( ( a X. a ) ~~ ( m X. m ) /\ ( m X. m ) ~~ a ) -> ( a X. a ) ~~ a ) |
295 |
293 294
|
sylan |
|- ( ( a ~~ m /\ ( m X. m ) ~~ a ) -> ( a X. a ) ~~ a ) |
296 |
276 291 295
|
syl2an2r |
|- ( ( m ~~ a /\ ( m X. m ) ~~ m ) -> ( a X. a ) ~~ a ) |
297 |
296
|
ex |
|- ( m ~~ a -> ( ( m X. m ) ~~ m -> ( a X. a ) ~~ a ) ) |
298 |
297
|
ad2antll |
|- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( ( m X. m ) ~~ m -> ( a X. a ) ~~ a ) ) |
299 |
289 298
|
mpd |
|- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( a X. a ) ~~ a ) |
300 |
299
|
ex |
|- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
301 |
300
|
expr |
|- ( ( _om C_ a /\ a e. On ) -> ( m e. a -> ( ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) ) |
302 |
301
|
rexlimdv |
|- ( ( _om C_ a /\ a e. On ) -> ( E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
303 |
274 260 302
|
syl2anc |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> ( E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
304 |
273 303
|
mpd |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> ( a X. a ) ~~ a ) |
305 |
304
|
expr |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( -. A. m e. a m ~< a -> ( a X. a ) ~~ a ) ) |
306 |
258 305
|
pm2.61d |
|- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( a X. a ) ~~ a ) |
307 |
306
|
exp31 |
|- ( a e. On -> ( A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) -> ( _om C_ a -> ( a X. a ) ~~ a ) ) ) |
308 |
12 18 307
|
tfis3 |
|- ( A e. On -> ( _om C_ A -> ( A X. A ) ~~ A ) ) |
309 |
308
|
imp |
|- ( ( A e. On /\ _om C_ A ) -> ( A X. A ) ~~ A ) |