Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
|- < Or RR* |
2 |
1
|
a1i |
|- ( A C_ RR* -> < Or RR* ) |
3 |
|
xrinfmss |
|- ( A C_ RR* -> E. z e. RR* ( A. y e. A -. y < z /\ A. y e. RR* ( z < y -> E. x e. A x < y ) ) ) |
4 |
|
id |
|- ( A C_ RR* -> A C_ RR* ) |
5 |
2 3 4
|
infglbb |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( inf ( A , RR* , < ) < B <-> E. x e. A x < B ) ) |
6 |
5
|
notbid |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( -. inf ( A , RR* , < ) < B <-> -. E. x e. A x < B ) ) |
7 |
|
ralnex |
|- ( A. x e. A -. x < B <-> -. E. x e. A x < B ) |
8 |
6 7
|
bitr4di |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( -. inf ( A , RR* , < ) < B <-> A. x e. A -. x < B ) ) |
9 |
|
id |
|- ( B e. RR* -> B e. RR* ) |
10 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
11 |
|
xrlenlt |
|- ( ( B e. RR* /\ inf ( A , RR* , < ) e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> -. inf ( A , RR* , < ) < B ) ) |
12 |
9 10 11
|
syl2anr |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> -. inf ( A , RR* , < ) < B ) ) |
13 |
|
simplr |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> B e. RR* ) |
14 |
|
simpl |
|- ( ( A C_ RR* /\ B e. RR* ) -> A C_ RR* ) |
15 |
14
|
sselda |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> x e. RR* ) |
16 |
13 15
|
xrlenltd |
|- ( ( ( A C_ RR* /\ B e. RR* ) /\ x e. A ) -> ( B <_ x <-> -. x < B ) ) |
17 |
16
|
ralbidva |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( A. x e. A B <_ x <-> A. x e. A -. x < B ) ) |
18 |
8 12 17
|
3bitr4d |
|- ( ( A C_ RR* /\ B e. RR* ) -> ( B <_ inf ( A , RR* , < ) <-> A. x e. A B <_ x ) ) |