Step |
Hyp |
Ref |
Expression |
1 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
2 |
1
|
adantr |
|- ( ( A C_ RR* /\ B e. A ) -> inf ( A , RR* , < ) e. RR* ) |
3 |
|
ssel2 |
|- ( ( A C_ RR* /\ B e. A ) -> B e. RR* ) |
4 |
|
xrltso |
|- < Or RR* |
5 |
4
|
a1i |
|- ( A C_ RR* -> < Or RR* ) |
6 |
|
xrinfmss |
|- ( A C_ RR* -> E. x e. RR* ( A. y e. A -. y < x /\ A. y e. RR* ( x < y -> E. z e. A z < y ) ) ) |
7 |
5 6
|
inflb |
|- ( A C_ RR* -> ( B e. A -> -. B < inf ( A , RR* , < ) ) ) |
8 |
7
|
imp |
|- ( ( A C_ RR* /\ B e. A ) -> -. B < inf ( A , RR* , < ) ) |
9 |
2 3 8
|
xrnltled |
|- ( ( A C_ RR* /\ B e. A ) -> inf ( A , RR* , < ) <_ B ) |