Metamath Proof Explorer


Theorem infxrlb

Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infxrlb
|- ( ( A C_ RR* /\ B e. A ) -> inf ( A , RR* , < ) <_ B )

Proof

Step Hyp Ref Expression
1 infxrcl
 |-  ( A C_ RR* -> inf ( A , RR* , < ) e. RR* )
2 1 adantr
 |-  ( ( A C_ RR* /\ B e. A ) -> inf ( A , RR* , < ) e. RR* )
3 ssel2
 |-  ( ( A C_ RR* /\ B e. A ) -> B e. RR* )
4 xrltso
 |-  < Or RR*
5 4 a1i
 |-  ( A C_ RR* -> < Or RR* )
6 xrinfmss
 |-  ( A C_ RR* -> E. x e. RR* ( A. y e. A -. y < x /\ A. y e. RR* ( x < y -> E. z e. A z < y ) ) )
7 5 6 inflb
 |-  ( A C_ RR* -> ( B e. A -> -. B < inf ( A , RR* , < ) ) )
8 7 imp
 |-  ( ( A C_ RR* /\ B e. A ) -> -. B < inf ( A , RR* , < ) )
9 2 3 8 xrnltled
 |-  ( ( A C_ RR* /\ B e. A ) -> inf ( A , RR* , < ) <_ B )