Step |
Hyp |
Ref |
Expression |
1 |
|
infxrlesupxr.1 |
|- ( ph -> A C_ RR* ) |
2 |
|
infxrlesupxr.2 |
|- ( ph -> A =/= (/) ) |
3 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
4 |
3
|
biimpi |
|- ( A =/= (/) -> E. x x e. A ) |
5 |
2 4
|
syl |
|- ( ph -> E. x x e. A ) |
6 |
1
|
infxrcld |
|- ( ph -> inf ( A , RR* , < ) e. RR* ) |
7 |
6
|
adantr |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) e. RR* ) |
8 |
1
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
9 |
1
|
supxrcld |
|- ( ph -> sup ( A , RR* , < ) e. RR* ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
11 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
12 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
13 |
|
infxrlb |
|- ( ( A C_ RR* /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
14 |
11 12 13
|
syl2anc |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
15 |
|
eqid |
|- sup ( A , RR* , < ) = sup ( A , RR* , < ) |
16 |
11 12 15
|
supxrubd |
|- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR* , < ) ) |
17 |
7 8 10 14 16
|
xrletrd |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) |
18 |
17
|
ex |
|- ( ph -> ( x e. A -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) ) |
19 |
18
|
exlimdv |
|- ( ph -> ( E. x x e. A -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) ) |
20 |
5 19
|
mpd |
|- ( ph -> inf ( A , RR* , < ) <_ sup ( A , RR* , < ) ) |