Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A C_ RR* -> A C_ RR* ) |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
|
snssi |
|- ( +oo e. RR* -> { +oo } C_ RR* ) |
4 |
2 3
|
ax-mp |
|- { +oo } C_ RR* |
5 |
4
|
a1i |
|- ( A C_ RR* -> { +oo } C_ RR* ) |
6 |
1 5
|
unssd |
|- ( A C_ RR* -> ( A u. { +oo } ) C_ RR* ) |
7 |
6
|
infxrcld |
|- ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) e. RR* ) |
8 |
|
infxrcl |
|- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
9 |
|
ssun1 |
|- A C_ ( A u. { +oo } ) |
10 |
9
|
a1i |
|- ( A C_ RR* -> A C_ ( A u. { +oo } ) ) |
11 |
|
infxrss |
|- ( ( A C_ ( A u. { +oo } ) /\ ( A u. { +oo } ) C_ RR* ) -> inf ( ( A u. { +oo } ) , RR* , < ) <_ inf ( A , RR* , < ) ) |
12 |
10 6 11
|
syl2anc |
|- ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) <_ inf ( A , RR* , < ) ) |
13 |
|
infeq1 |
|- ( A = (/) -> inf ( A , RR* , < ) = inf ( (/) , RR* , < ) ) |
14 |
|
xrinf0 |
|- inf ( (/) , RR* , < ) = +oo |
15 |
14 2
|
eqeltri |
|- inf ( (/) , RR* , < ) e. RR* |
16 |
15
|
a1i |
|- ( A = (/) -> inf ( (/) , RR* , < ) e. RR* ) |
17 |
13 16
|
eqeltrd |
|- ( A = (/) -> inf ( A , RR* , < ) e. RR* ) |
18 |
|
xrltso |
|- < Or RR* |
19 |
|
infsn |
|- ( ( < Or RR* /\ +oo e. RR* ) -> inf ( { +oo } , RR* , < ) = +oo ) |
20 |
18 2 19
|
mp2an |
|- inf ( { +oo } , RR* , < ) = +oo |
21 |
20
|
eqcomi |
|- +oo = inf ( { +oo } , RR* , < ) |
22 |
21
|
a1i |
|- ( A = (/) -> +oo = inf ( { +oo } , RR* , < ) ) |
23 |
13 14
|
eqtrdi |
|- ( A = (/) -> inf ( A , RR* , < ) = +oo ) |
24 |
|
uneq1 |
|- ( A = (/) -> ( A u. { +oo } ) = ( (/) u. { +oo } ) ) |
25 |
|
0un |
|- ( (/) u. { +oo } ) = { +oo } |
26 |
25
|
a1i |
|- ( A = (/) -> ( (/) u. { +oo } ) = { +oo } ) |
27 |
24 26
|
eqtrd |
|- ( A = (/) -> ( A u. { +oo } ) = { +oo } ) |
28 |
27
|
infeq1d |
|- ( A = (/) -> inf ( ( A u. { +oo } ) , RR* , < ) = inf ( { +oo } , RR* , < ) ) |
29 |
22 23 28
|
3eqtr4d |
|- ( A = (/) -> inf ( A , RR* , < ) = inf ( ( A u. { +oo } ) , RR* , < ) ) |
30 |
17 29
|
xreqled |
|- ( A = (/) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) ) |
31 |
30
|
adantl |
|- ( ( A C_ RR* /\ A = (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) ) |
32 |
|
neqne |
|- ( -. A = (/) -> A =/= (/) ) |
33 |
|
nfv |
|- F/ x ( A C_ RR* /\ A =/= (/) ) |
34 |
|
nfv |
|- F/ y ( A C_ RR* /\ A =/= (/) ) |
35 |
|
simpl |
|- ( ( A C_ RR* /\ A =/= (/) ) -> A C_ RR* ) |
36 |
35 6
|
syl |
|- ( ( A C_ RR* /\ A =/= (/) ) -> ( A u. { +oo } ) C_ RR* ) |
37 |
|
simpr |
|- ( ( A C_ RR* /\ x e. A ) -> x e. A ) |
38 |
|
ssel2 |
|- ( ( A C_ RR* /\ x e. A ) -> x e. RR* ) |
39 |
38
|
xrleidd |
|- ( ( A C_ RR* /\ x e. A ) -> x <_ x ) |
40 |
|
breq1 |
|- ( y = x -> ( y <_ x <-> x <_ x ) ) |
41 |
40
|
rspcev |
|- ( ( x e. A /\ x <_ x ) -> E. y e. A y <_ x ) |
42 |
37 39 41
|
syl2anc |
|- ( ( A C_ RR* /\ x e. A ) -> E. y e. A y <_ x ) |
43 |
42
|
ad4ant14 |
|- ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ x e. A ) -> E. y e. A y <_ x ) |
44 |
|
simpll |
|- ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> ( A C_ RR* /\ A =/= (/) ) ) |
45 |
|
elunnel1 |
|- ( ( x e. ( A u. { +oo } ) /\ -. x e. A ) -> x e. { +oo } ) |
46 |
|
elsni |
|- ( x e. { +oo } -> x = +oo ) |
47 |
45 46
|
syl |
|- ( ( x e. ( A u. { +oo } ) /\ -. x e. A ) -> x = +oo ) |
48 |
47
|
adantll |
|- ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> x = +oo ) |
49 |
|
simplr |
|- ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> A =/= (/) ) |
50 |
|
ssel2 |
|- ( ( A C_ RR* /\ y e. A ) -> y e. RR* ) |
51 |
|
pnfge |
|- ( y e. RR* -> y <_ +oo ) |
52 |
50 51
|
syl |
|- ( ( A C_ RR* /\ y e. A ) -> y <_ +oo ) |
53 |
52
|
adantlr |
|- ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> y <_ +oo ) |
54 |
|
simplr |
|- ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> x = +oo ) |
55 |
53 54
|
breqtrrd |
|- ( ( ( A C_ RR* /\ x = +oo ) /\ y e. A ) -> y <_ x ) |
56 |
55
|
ralrimiva |
|- ( ( A C_ RR* /\ x = +oo ) -> A. y e. A y <_ x ) |
57 |
56
|
adantlr |
|- ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> A. y e. A y <_ x ) |
58 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. y e. A y <_ x ) -> E. y e. A y <_ x ) |
59 |
49 57 58
|
syl2anc |
|- ( ( ( A C_ RR* /\ A =/= (/) ) /\ x = +oo ) -> E. y e. A y <_ x ) |
60 |
44 48 59
|
syl2anc |
|- ( ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) /\ -. x e. A ) -> E. y e. A y <_ x ) |
61 |
43 60
|
pm2.61dan |
|- ( ( ( A C_ RR* /\ A =/= (/) ) /\ x e. ( A u. { +oo } ) ) -> E. y e. A y <_ x ) |
62 |
33 34 35 36 61
|
infleinf2 |
|- ( ( A C_ RR* /\ A =/= (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) ) |
63 |
32 62
|
sylan2 |
|- ( ( A C_ RR* /\ -. A = (/) ) -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) ) |
64 |
31 63
|
pm2.61dan |
|- ( A C_ RR* -> inf ( A , RR* , < ) <_ inf ( ( A u. { +oo } ) , RR* , < ) ) |
65 |
7 8 12 64
|
xrletrid |
|- ( A C_ RR* -> inf ( ( A u. { +oo } ) , RR* , < ) = inf ( A , RR* , < ) ) |