Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> A C_ RR ) |
2 |
|
simp3 |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> A =/= (/) ) |
3 |
|
fiminre2 |
|- ( ( A C_ RR /\ A e. Fin ) -> E. x e. RR A. y e. A x <_ y ) |
4 |
3
|
3adant3 |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> E. x e. RR A. y e. A x <_ y ) |
5 |
|
infxrre |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR* , < ) = inf ( A , RR , < ) ) |
6 |
1 2 4 5
|
syl3anc |
|- ( ( A C_ RR /\ A e. Fin /\ A =/= (/) ) -> inf ( A , RR* , < ) = inf ( A , RR , < ) ) |