Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> B C_ RR* ) |
2 |
|
simpl |
|- ( ( A C_ B /\ B C_ RR* ) -> A C_ B ) |
3 |
2
|
sselda |
|- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> x e. B ) |
4 |
|
infxrlb |
|- ( ( B C_ RR* /\ x e. B ) -> inf ( B , RR* , < ) <_ x ) |
5 |
1 3 4
|
syl2anc |
|- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> inf ( B , RR* , < ) <_ x ) |
6 |
5
|
ralrimiva |
|- ( ( A C_ B /\ B C_ RR* ) -> A. x e. A inf ( B , RR* , < ) <_ x ) |
7 |
|
sstr |
|- ( ( A C_ B /\ B C_ RR* ) -> A C_ RR* ) |
8 |
|
infxrcl |
|- ( B C_ RR* -> inf ( B , RR* , < ) e. RR* ) |
9 |
8
|
adantl |
|- ( ( A C_ B /\ B C_ RR* ) -> inf ( B , RR* , < ) e. RR* ) |
10 |
|
infxrgelb |
|- ( ( A C_ RR* /\ inf ( B , RR* , < ) e. RR* ) -> ( inf ( B , RR* , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( B , RR* , < ) <_ x ) ) |
11 |
7 9 10
|
syl2anc |
|- ( ( A C_ B /\ B C_ RR* ) -> ( inf ( B , RR* , < ) <_ inf ( A , RR* , < ) <-> A. x e. A inf ( B , RR* , < ) <_ x ) ) |
12 |
6 11
|
mpbird |
|- ( ( A C_ B /\ B C_ RR* ) -> inf ( B , RR* , < ) <_ inf ( A , RR* , < ) ) |