Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|- F/ x A C_ RR* |
2 |
|
nfra1 |
|- F/ x A. x e. RR E. y e. A y < x |
3 |
1 2
|
nfan |
|- F/ x ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) |
4 |
|
nfv |
|- F/ y A C_ RR* |
5 |
|
nfcv |
|- F/_ y RR |
6 |
|
nfre1 |
|- F/ y E. y e. A y < x |
7 |
5 6
|
nfralw |
|- F/ y A. x e. RR E. y e. A y < x |
8 |
4 7
|
nfan |
|- F/ y ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) |
9 |
|
simpl |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) -> A C_ RR* ) |
10 |
|
mnfxr |
|- -oo e. RR* |
11 |
10
|
a1i |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) -> -oo e. RR* ) |
12 |
|
ssel2 |
|- ( ( A C_ RR* /\ x e. A ) -> x e. RR* ) |
13 |
|
nltmnf |
|- ( x e. RR* -> -. x < -oo ) |
14 |
12 13
|
syl |
|- ( ( A C_ RR* /\ x e. A ) -> -. x < -oo ) |
15 |
14
|
ralrimiva |
|- ( A C_ RR* -> A. x e. A -. x < -oo ) |
16 |
15
|
adantr |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) -> A. x e. A -. x < -oo ) |
17 |
|
ralimralim |
|- ( A. x e. RR E. y e. A y < x -> A. x e. RR ( -oo < x -> E. y e. A y < x ) ) |
18 |
17
|
adantl |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) -> A. x e. RR ( -oo < x -> E. y e. A y < x ) ) |
19 |
3 8 9 11 16 18
|
infxr |
|- ( ( A C_ RR* /\ A. x e. RR E. y e. A y < x ) -> inf ( A , RR* , < ) = -oo ) |
20 |
19
|
ex |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A y < x -> inf ( A , RR* , < ) = -oo ) ) |
21 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
22 |
21
|
adantl |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> x e. RR* ) |
23 |
|
simpl |
|- ( ( inf ( A , RR* , < ) = -oo /\ x e. RR ) -> inf ( A , RR* , < ) = -oo ) |
24 |
|
mnflt |
|- ( x e. RR -> -oo < x ) |
25 |
24
|
adantl |
|- ( ( inf ( A , RR* , < ) = -oo /\ x e. RR ) -> -oo < x ) |
26 |
23 25
|
eqbrtrd |
|- ( ( inf ( A , RR* , < ) = -oo /\ x e. RR ) -> inf ( A , RR* , < ) < x ) |
27 |
26
|
adantll |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> inf ( A , RR* , < ) < x ) |
28 |
|
xrltso |
|- < Or RR* |
29 |
28
|
a1i |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> < Or RR* ) |
30 |
|
xrinfmss |
|- ( A C_ RR* -> E. z e. RR* ( A. w e. A -. w < z /\ A. w e. RR* ( z < w -> E. y e. A y < w ) ) ) |
31 |
30
|
ad2antrr |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> E. z e. RR* ( A. w e. A -. w < z /\ A. w e. RR* ( z < w -> E. y e. A y < w ) ) ) |
32 |
29 31
|
infglb |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> ( ( x e. RR* /\ inf ( A , RR* , < ) < x ) -> E. y e. A y < x ) ) |
33 |
22 27 32
|
mp2and |
|- ( ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) /\ x e. RR ) -> E. y e. A y < x ) |
34 |
33
|
ralrimiva |
|- ( ( A C_ RR* /\ inf ( A , RR* , < ) = -oo ) -> A. x e. RR E. y e. A y < x ) |
35 |
34
|
ex |
|- ( A C_ RR* -> ( inf ( A , RR* , < ) = -oo -> A. x e. RR E. y e. A y < x ) ) |
36 |
20 35
|
impbid |
|- ( A C_ RR* -> ( A. x e. RR E. y e. A y < x <-> inf ( A , RR* , < ) = -oo ) ) |