| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( x e. ( ( A " { C } ) i^i ( B " { C } ) ) <-> ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) ) | 
						
							| 2 |  | elin |  |-  ( <. C , x >. e. ( A i^i B ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) | 
						
							| 3 | 2 | a1i |  |-  ( C e. V -> ( <. C , x >. e. ( A i^i B ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) ) | 
						
							| 4 |  | elimasng |  |-  ( ( C e. V /\ x e. _V ) -> ( x e. ( ( A i^i B ) " { C } ) <-> <. C , x >. e. ( A i^i B ) ) ) | 
						
							| 5 | 4 | elvd |  |-  ( C e. V -> ( x e. ( ( A i^i B ) " { C } ) <-> <. C , x >. e. ( A i^i B ) ) ) | 
						
							| 6 |  | elimasng |  |-  ( ( C e. V /\ x e. _V ) -> ( x e. ( A " { C } ) <-> <. C , x >. e. A ) ) | 
						
							| 7 | 6 | elvd |  |-  ( C e. V -> ( x e. ( A " { C } ) <-> <. C , x >. e. A ) ) | 
						
							| 8 |  | elimasng |  |-  ( ( C e. V /\ x e. _V ) -> ( x e. ( B " { C } ) <-> <. C , x >. e. B ) ) | 
						
							| 9 | 8 | elvd |  |-  ( C e. V -> ( x e. ( B " { C } ) <-> <. C , x >. e. B ) ) | 
						
							| 10 | 7 9 | anbi12d |  |-  ( C e. V -> ( ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) <-> ( <. C , x >. e. A /\ <. C , x >. e. B ) ) ) | 
						
							| 11 | 3 5 10 | 3bitr4rd |  |-  ( C e. V -> ( ( x e. ( A " { C } ) /\ x e. ( B " { C } ) ) <-> x e. ( ( A i^i B ) " { C } ) ) ) | 
						
							| 12 | 1 11 | bitr2id |  |-  ( C e. V -> ( x e. ( ( A i^i B ) " { C } ) <-> x e. ( ( A " { C } ) i^i ( B " { C } ) ) ) ) | 
						
							| 13 | 12 | eqrdv |  |-  ( C e. V -> ( ( A i^i B ) " { C } ) = ( ( A " { C } ) i^i ( B " { C } ) ) ) |