Step |
Hyp |
Ref |
Expression |
1 |
|
rnin |
|- ran ( ( A |` C ) i^i ( B |` C ) ) C_ ( ran ( A |` C ) i^i ran ( B |` C ) ) |
2 |
|
df-ima |
|- ( ( A i^i B ) " C ) = ran ( ( A i^i B ) |` C ) |
3 |
|
resindir |
|- ( ( A i^i B ) |` C ) = ( ( A |` C ) i^i ( B |` C ) ) |
4 |
3
|
rneqi |
|- ran ( ( A i^i B ) |` C ) = ran ( ( A |` C ) i^i ( B |` C ) ) |
5 |
2 4
|
eqtri |
|- ( ( A i^i B ) " C ) = ran ( ( A |` C ) i^i ( B |` C ) ) |
6 |
|
df-ima |
|- ( A " C ) = ran ( A |` C ) |
7 |
|
df-ima |
|- ( B " C ) = ran ( B |` C ) |
8 |
6 7
|
ineq12i |
|- ( ( A " C ) i^i ( B " C ) ) = ( ran ( A |` C ) i^i ran ( B |` C ) ) |
9 |
1 5 8
|
3sstr4i |
|- ( ( A i^i B ) " C ) C_ ( ( A " C ) i^i ( B " C ) ) |