Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | inindif | |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 | |- ( A i^i C ) C_ C |
|
2 | 1 | orci | |- ( ( A i^i C ) C_ C \/ A C_ C ) |
3 | inss | |- ( ( ( A i^i C ) C_ C \/ A C_ C ) -> ( ( A i^i C ) i^i A ) C_ C ) |
|
4 | 2 3 | ax-mp | |- ( ( A i^i C ) i^i A ) C_ C |
5 | inssdif0 | |- ( ( ( A i^i C ) i^i A ) C_ C <-> ( ( A i^i C ) i^i ( A \ C ) ) = (/) ) |
|
6 | 4 5 | mpbi | |- ( ( A i^i C ) i^i ( A \ C ) ) = (/) |