Metamath Proof Explorer


Theorem inindif

Description: See inundif . (Contributed by Thierry Arnoux, 13-Sep-2017)

Ref Expression
Assertion inindif
|- ( ( A i^i C ) i^i ( A \ C ) ) = (/)

Proof

Step Hyp Ref Expression
1 inss2
 |-  ( A i^i C ) C_ C
2 1 orci
 |-  ( ( A i^i C ) C_ C \/ A C_ C )
3 inss
 |-  ( ( ( A i^i C ) C_ C \/ A C_ C ) -> ( ( A i^i C ) i^i A ) C_ C )
4 2 3 ax-mp
 |-  ( ( A i^i C ) i^i A ) C_ C
5 inssdif0
 |-  ( ( ( A i^i C ) i^i A ) C_ C <-> ( ( A i^i C ) i^i ( A \ C ) ) = (/) )
6 4 5 mpbi
 |-  ( ( A i^i C ) i^i ( A \ C ) ) = (/)