Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. ran F -> A e. _V ) |
2 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
3 |
2
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
4 |
3
|
imaeq2d |
|- ( -. A e. _V -> ( `' F " { A } ) = ( `' F " (/) ) ) |
5 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
6 |
4 5
|
eqtrdi |
|- ( -. A e. _V -> ( `' F " { A } ) = (/) ) |
7 |
6
|
necon1ai |
|- ( ( `' F " { A } ) =/= (/) -> A e. _V ) |
8 |
|
eleq1 |
|- ( a = A -> ( a e. ran F <-> A e. ran F ) ) |
9 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
10 |
9
|
imaeq2d |
|- ( a = A -> ( `' F " { a } ) = ( `' F " { A } ) ) |
11 |
10
|
neeq1d |
|- ( a = A -> ( ( `' F " { a } ) =/= (/) <-> ( `' F " { A } ) =/= (/) ) ) |
12 |
|
abn0 |
|- ( { b | b F a } =/= (/) <-> E. b b F a ) |
13 |
|
iniseg |
|- ( a e. _V -> ( `' F " { a } ) = { b | b F a } ) |
14 |
13
|
elv |
|- ( `' F " { a } ) = { b | b F a } |
15 |
14
|
neeq1i |
|- ( ( `' F " { a } ) =/= (/) <-> { b | b F a } =/= (/) ) |
16 |
|
vex |
|- a e. _V |
17 |
16
|
elrn |
|- ( a e. ran F <-> E. b b F a ) |
18 |
12 15 17
|
3bitr4ri |
|- ( a e. ran F <-> ( `' F " { a } ) =/= (/) ) |
19 |
8 11 18
|
vtoclbg |
|- ( A e. _V -> ( A e. ran F <-> ( `' F " { A } ) =/= (/) ) ) |
20 |
1 7 19
|
pm5.21nii |
|- ( A e. ran F <-> ( `' F " { A } ) =/= (/) ) |