| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | initoeu1.a |  |-  ( ph -> A e. ( InitO ` C ) ) | 
						
							| 3 |  | initoeu1.b |  |-  ( ph -> B e. ( InitO ` C ) ) | 
						
							| 4 | 1 2 3 | initoeu1 |  |-  ( ph -> E! f f e. ( A ( Iso ` C ) B ) ) | 
						
							| 5 |  | euex |  |-  ( E! f f e. ( A ( Iso ` C ) B ) -> E. f f e. ( A ( Iso ` C ) B ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> E. f f e. ( A ( Iso ` C ) B ) ) | 
						
							| 7 |  | eqid |  |-  ( Iso ` C ) = ( Iso ` C ) | 
						
							| 8 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 9 |  | initoo |  |-  ( C e. Cat -> ( A e. ( InitO ` C ) -> A e. ( Base ` C ) ) ) | 
						
							| 10 | 1 2 9 | sylc |  |-  ( ph -> A e. ( Base ` C ) ) | 
						
							| 11 |  | initoo |  |-  ( C e. Cat -> ( B e. ( InitO ` C ) -> B e. ( Base ` C ) ) ) | 
						
							| 12 | 1 3 11 | sylc |  |-  ( ph -> B e. ( Base ` C ) ) | 
						
							| 13 | 7 8 1 10 12 | cic |  |-  ( ph -> ( A ( ~=c ` C ) B <-> E. f f e. ( A ( Iso ` C ) B ) ) ) | 
						
							| 14 | 6 13 | mpbird |  |-  ( ph -> A ( ~=c ` C ) B ) |