| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoeu1.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | initoeu1.a |  |-  ( ph -> A e. ( InitO ` C ) ) | 
						
							| 3 |  | initoeu2lem.x |  |-  X = ( Base ` C ) | 
						
							| 4 |  | initoeu2lem.h |  |-  H = ( Hom ` C ) | 
						
							| 5 |  | initoeu2lem.i |  |-  I = ( Iso ` C ) | 
						
							| 6 |  | initoeu2lem.o |  |-  .o. = ( comp ` C ) | 
						
							| 7 |  | 3simpa |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) ) | 
						
							| 8 |  | simp3 |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Inv ` C ) = ( Inv ` C ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> C e. Cat ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> C e. Cat ) | 
						
							| 13 |  | simpr1 |  |-  ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> A e. X ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> A e. X ) | 
						
							| 15 |  | simpr2 |  |-  ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> B e. X ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> B e. X ) | 
						
							| 17 |  | simplr3 |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> D e. X ) | 
						
							| 18 | 5 | oveqi |  |-  ( B I A ) = ( B ( Iso ` C ) A ) | 
						
							| 19 | 18 | eleq2i |  |-  ( K e. ( B I A ) <-> K e. ( B ( Iso ` C ) A ) ) | 
						
							| 20 | 19 | biimpi |  |-  ( K e. ( B I A ) -> K e. ( B ( Iso ` C ) A ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> K e. ( B ( Iso ` C ) A ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> K e. ( B ( Iso ` C ) A ) ) | 
						
							| 23 | 4 | oveqi |  |-  ( B H D ) = ( B ( Hom ` C ) D ) | 
						
							| 24 | 23 | eleq2i |  |-  ( G e. ( B H D ) <-> G e. ( B ( Hom ` C ) D ) ) | 
						
							| 25 | 24 | biimpi |  |-  ( G e. ( B H D ) -> G e. ( B ( Hom ` C ) D ) ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> G e. ( B ( Hom ` C ) D ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> G e. ( B ( Hom ` C ) D ) ) | 
						
							| 28 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 29 | 3 28 5 11 15 13 | isohom |  |-  ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> ( B I A ) C_ ( B ( Hom ` C ) A ) ) | 
						
							| 30 | 29 | sseld |  |-  ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> ( K e. ( B I A ) -> K e. ( B ( Hom ` C ) A ) ) ) | 
						
							| 31 | 30 | com12 |  |-  ( K e. ( B I A ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> K e. ( B ( Hom ` C ) A ) ) ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) -> K e. ( B ( Hom ` C ) A ) ) ) | 
						
							| 33 | 32 | impcom |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> K e. ( B ( Hom ` C ) A ) ) | 
						
							| 34 | 4 | oveqi |  |-  ( A H D ) = ( A ( Hom ` C ) D ) | 
						
							| 35 | 34 | eleq2i |  |-  ( F e. ( A H D ) <-> F e. ( A ( Hom ` C ) D ) ) | 
						
							| 36 | 35 | biimpi |  |-  ( F e. ( A H D ) -> F e. ( A ( Hom ` C ) D ) ) | 
						
							| 37 | 36 | 3ad2ant2 |  |-  ( ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) -> F e. ( A ( Hom ` C ) D ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> F e. ( A ( Hom ` C ) D ) ) | 
						
							| 39 | 3 28 6 12 16 14 17 33 38 | catcocl |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( F ( <. B , A >. .o. D ) K ) e. ( B ( Hom ` C ) D ) ) | 
						
							| 40 |  | eqid |  |-  ( ( B ( Inv ` C ) A ) ` K ) = ( ( B ( Inv ` C ) A ) ` K ) | 
						
							| 41 | 6 | oveqi |  |-  ( <. A , B >. .o. D ) = ( <. A , B >. ( comp ` C ) D ) | 
						
							| 42 | 3 10 12 14 16 17 22 27 39 40 41 | rcaninv |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) ) -> ( ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) ) | 
						
							| 43 | 7 9 42 | sylc |  |-  ( ( ( ph /\ ( A e. X /\ B e. X /\ D e. X ) ) /\ ( K e. ( B I A ) /\ F e. ( A H D ) /\ G e. ( B H D ) ) /\ ( ( F ( <. B , A >. .o. D ) K ) ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) = ( G ( <. A , B >. .o. D ) ( ( B ( Inv ` C ) A ) ` K ) ) ) -> G = ( F ( <. B , A >. .o. D ) K ) ) |