Step |
Hyp |
Ref |
Expression |
1 |
|
inlinecirc02p.i |
|- I = { 1 , 2 } |
2 |
|
inlinecirc02p.e |
|- E = ( RR^ ` I ) |
3 |
|
inlinecirc02p.p |
|- P = ( RR ^m I ) |
4 |
|
inlinecirc02p.s |
|- S = ( Sphere ` E ) |
5 |
|
inlinecirc02p.0 |
|- .0. = ( I X. { 0 } ) |
6 |
|
inlinecirc02p.l |
|- L = ( LineM ` E ) |
7 |
|
inlinecirc02p.d |
|- D = ( dist ` E ) |
8 |
3
|
ovexi |
|- P e. _V |
9 |
8
|
a1i |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> P e. _V ) |
10 |
|
simpl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
11 |
|
simpl |
|- ( ( R e. RR+ /\ ( X D .0. ) < R ) -> R e. RR+ ) |
12 |
11
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> R e. RR+ ) |
13 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
14 |
13
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 1 ) e. RR ) |
15 |
14
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( X ` 1 ) e. RR ) |
16 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
17 |
16
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. RR ) |
18 |
17
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( X ` 2 ) e. RR ) |
19 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
20 |
19
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 1 ) e. RR ) |
21 |
20
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( Y ` 1 ) e. RR ) |
22 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
23 |
22
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. RR ) |
24 |
23
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( Y ` 2 ) e. RR ) |
25 |
|
eqid |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( X ` 1 ) ) |
26 |
|
eqid |
|- ( ( X ` 2 ) - ( Y ` 2 ) ) = ( ( X ` 2 ) - ( Y ` 2 ) ) |
27 |
|
eqid |
|- ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) = ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) |
28 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
29 |
28
|
adantr |
|- ( ( R e. RR+ /\ ( X D .0. ) < R ) -> R e. RR ) |
30 |
29
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> R e. RR ) |
31 |
|
2nn0 |
|- 2 e. NN0 |
32 |
|
eqid |
|- ( EEhil ` 2 ) = ( EEhil ` 2 ) |
33 |
32
|
ehlval |
|- ( 2 e. NN0 -> ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) ) |
34 |
31 33
|
ax-mp |
|- ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) |
35 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
36 |
35 1
|
eqtr4i |
|- ( 1 ... 2 ) = I |
37 |
36
|
fveq2i |
|- ( RR^ ` ( 1 ... 2 ) ) = ( RR^ ` I ) |
38 |
34 37
|
eqtri |
|- ( EEhil ` 2 ) = ( RR^ ` I ) |
39 |
2 38
|
eqtr4i |
|- E = ( EEhil ` 2 ) |
40 |
1
|
oveq2i |
|- ( RR ^m I ) = ( RR ^m { 1 , 2 } ) |
41 |
3 40
|
eqtri |
|- P = ( RR ^m { 1 , 2 } ) |
42 |
1
|
xpeq1i |
|- ( I X. { 0 } ) = ( { 1 , 2 } X. { 0 } ) |
43 |
5 42
|
eqtri |
|- .0. = ( { 1 , 2 } X. { 0 } ) |
44 |
39 41 7 43
|
ehl2eudis0lt |
|- ( ( X e. P /\ R e. RR+ ) -> ( ( X D .0. ) < R <-> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |
45 |
44
|
3ad2antl1 |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ R e. RR+ ) -> ( ( X D .0. ) < R <-> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |
46 |
45
|
biimpd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ R e. RR+ ) -> ( ( X D .0. ) < R -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |
47 |
46
|
impr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) |
48 |
1 3
|
rrx2pnecoorneor |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) |
49 |
48
|
orcomd |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 2 ) =/= ( Y ` 2 ) \/ ( X ` 1 ) =/= ( Y ` 1 ) ) ) |
50 |
49
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( X ` 2 ) =/= ( Y ` 2 ) \/ ( X ` 1 ) =/= ( Y ` 1 ) ) ) |
51 |
|
eqid |
|- ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) = ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) |
52 |
|
eqid |
|- ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ^ 2 ) ) = ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ^ 2 ) ) |
53 |
15 18 21 24 25 26 27 30 47 50 51 52
|
2itscp |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> 0 < ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ^ 2 ) ) ) |
54 |
19
|
recnd |
|- ( Y e. P -> ( Y ` 1 ) e. CC ) |
55 |
54
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. CC ) |
56 |
13
|
recnd |
|- ( X e. P -> ( X ` 1 ) e. CC ) |
57 |
56
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. CC ) |
58 |
16
|
recnd |
|- ( X e. P -> ( X ` 2 ) e. CC ) |
59 |
58
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. CC ) |
60 |
55 57 59
|
subdird |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) = ( ( ( Y ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) ) |
61 |
22
|
recnd |
|- ( Y e. P -> ( Y ` 2 ) e. CC ) |
62 |
61
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. CC ) |
63 |
59 62 57
|
subdird |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) = ( ( ( X ` 2 ) x. ( X ` 1 ) ) - ( ( Y ` 2 ) x. ( X ` 1 ) ) ) ) |
64 |
60 63
|
oveq12d |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) = ( ( ( ( Y ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) + ( ( ( X ` 2 ) x. ( X ` 1 ) ) - ( ( Y ` 2 ) x. ( X ` 1 ) ) ) ) ) |
65 |
55 59
|
mulcomd |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) x. ( X ` 2 ) ) = ( ( X ` 2 ) x. ( Y ` 1 ) ) ) |
66 |
65
|
oveq1d |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) ) |
67 |
59 57
|
mulcomd |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( X ` 1 ) ) = ( ( X ` 1 ) x. ( X ` 2 ) ) ) |
68 |
62 57
|
mulcomd |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) x. ( X ` 1 ) ) = ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
69 |
67 68
|
oveq12d |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( X ` 1 ) ) - ( ( Y ` 2 ) x. ( X ` 1 ) ) ) = ( ( ( X ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) |
70 |
66 69
|
oveq12d |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( ( Y ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) + ( ( ( X ` 2 ) x. ( X ` 1 ) ) - ( ( Y ` 2 ) x. ( X ` 1 ) ) ) ) = ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) + ( ( ( X ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) |
71 |
59 55
|
mulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. CC ) |
72 |
57 59
|
mulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( X ` 2 ) ) e. CC ) |
73 |
57 62
|
mulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. CC ) |
74 |
71 72 73
|
npncand |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( X ` 2 ) ) ) + ( ( ( X ` 1 ) x. ( X ` 2 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) |
75 |
64 70 74
|
3eqtrd |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) |
76 |
75
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) |
77 |
76
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) |
78 |
77
|
eqcomd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ) |
79 |
78
|
oveq1d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) = ( ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ^ 2 ) ) |
80 |
79
|
oveq2d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) ) = ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( X ` 2 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( X ` 1 ) ) ) ^ 2 ) ) ) |
81 |
53 80
|
breqtrrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> 0 < ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) ) ) |
82 |
|
eqid |
|- ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) ) = ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) ) |
83 |
|
eqid |
|- ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
84 |
1 2 3 4 5 6 51 82 26 25 83
|
inlinecirc02plem |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < ( ( ( R ^ 2 ) x. ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) ) - ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) ) ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) |
85 |
10 12 81 84
|
syl12anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) |
86 |
|
prprelprb |
|- ( ( ( .0. S R ) i^i ( X L Y ) ) e. ( PrPairs ` P ) <-> ( P e. _V /\ E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) ) |
87 |
9 85 86
|
sylanbrc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) e. ( PrPairs ` P ) ) |