| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							inlinecirc02p.i | 
							 |-  I = { 1 , 2 } | 
						
						
							| 2 | 
							
								
							 | 
							inlinecirc02p.e | 
							 |-  E = ( RR^ ` I )  | 
						
						
							| 3 | 
							
								
							 | 
							inlinecirc02p.p | 
							 |-  P = ( RR ^m I )  | 
						
						
							| 4 | 
							
								
							 | 
							inlinecirc02p.s | 
							 |-  S = ( Sphere ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							inlinecirc02p.0 | 
							 |-  .0. = ( I X. { 0 } ) | 
						
						
							| 6 | 
							
								
							 | 
							inlinecirc02p.l | 
							 |-  L = ( LineM ` E )  | 
						
						
							| 7 | 
							
								
							 | 
							inlinecirc02plem.q | 
							 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							inlinecirc02plem.d | 
							 |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							inlinecirc02plem.a | 
							 |-  A = ( ( X ` 2 ) - ( Y ` 2 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							inlinecirc02plem.b | 
							 |-  B = ( ( Y ` 1 ) - ( X ` 1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							inlinecirc02plem.c | 
							 |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 < D )  | 
						
						
							| 13 | 
							
								12
							 | 
							gt0ne0d | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D =/= 0 )  | 
						
						
							| 14 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( X e. P -> ( X ` 2 ) e. RR )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR )  | 
						
						
							| 16 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( Y e. P -> ( Y ` 2 ) e. RR )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> A e. RR )  | 
						
						
							| 20 | 
							
								19
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> A e. RR )  | 
						
						
							| 22 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( Y e. P -> ( Y ` 1 ) e. RR )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR )  | 
						
						
							| 24 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( X e. P -> ( X ` 1 ) e. RR )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> B e. RR )  | 
						
						
							| 28 | 
							
								27
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> B e. RR )  | 
						
						
							| 30 | 
							
								15 23
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR )  | 
						
						
							| 31 | 
							
								25 17
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR )  | 
						
						
							| 33 | 
							
								11 32
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> C e. RR )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> C e. RR )  | 
						
						
							| 36 | 
							
								19 27 33
							 | 
							3jca | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( A e. RR /\ B e. RR /\ C e. RR ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A e. RR /\ B e. RR /\ C e. RR ) )  | 
						
						
							| 38 | 
							
								
							 | 
							rpre | 
							 |-  ( R e. RR+ -> R e. RR )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( R e. RR+ /\ 0 < D ) -> R e. RR )  | 
						
						
							| 40 | 
							
								7 8
							 | 
							itsclc0lem3 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR )  | 
						
						
							| 41 | 
							
								37 39 40
							 | 
							syl2an | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. RR )  | 
						
						
							| 42 | 
							
								41 12
							 | 
							elrpd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. RR+ )  | 
						
						
							| 43 | 
							
								42
							 | 
							rprege0d | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( D e. RR /\ 0 <_ D ) )  | 
						
						
							| 44 | 
							
								7
							 | 
							resum2sqcl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR )  | 
						
						
							| 45 | 
							
								19 27 44
							 | 
							syl2anc | 
							 |-  ( ( X e. P /\ Y e. P ) -> Q e. RR )  | 
						
						
							| 46 | 
							
								45
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q e. RR )  | 
						
						
							| 47 | 
							
								1 3 10 9
							 | 
							rrx2pnedifcoorneorr | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							orcomd | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 49 | 
							
								7
							 | 
							resum2sqorgt0 | 
							 |-  ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q )  | 
						
						
							| 50 | 
							
								20 28 48 49
							 | 
							syl3anc | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> 0 < Q )  | 
						
						
							| 51 | 
							
								50
							 | 
							gt0ne0d | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q =/= 0 )  | 
						
						
							| 52 | 
							
								46 51
							 | 
							jca | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Q e. RR /\ Q =/= 0 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( Q e. RR /\ Q =/= 0 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							itsclc0lem1 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 55 | 
							
								21 29 35 43 53 54
							 | 
							syl311anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 56 | 
							
								
							 | 
							itsclc0lem2 | 
							 |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 57 | 
							
								29 21 35 43 53 56
							 | 
							syl311anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) )  | 
						
						
							| 60 | 
							
								1 3
							 | 
							prelrrx2 | 
							 |-  ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) | 
						
						
							| 61 | 
							
								59 60
							 | 
							syl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) | 
						
						
							| 62 | 
							
								
							 | 
							itsclc0lem2 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 63 | 
							
								21 29 35 43 53 62
							 | 
							syl311anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 64 | 
							
								
							 | 
							itsclc0lem1 | 
							 |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 65 | 
							
								29 21 35 43 53 64
							 | 
							syl311anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 66 | 
							
								63 65
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) )  | 
						
						
							| 68 | 
							
								1 3
							 | 
							prelrrx2 | 
							 |-  ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) -> { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) | 
						
						
							| 69 | 
							
								67 68
							 | 
							syl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P ) | 
						
						
							| 70 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( X e. P /\ Y e. P /\ X =/= Y ) )  | 
						
						
							| 71 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> R e. RR+ )  | 
						
						
							| 72 | 
							
								
							 | 
							0red | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 e. RR )  | 
						
						
							| 73 | 
							
								72 41 12
							 | 
							ltled | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> 0 <_ D )  | 
						
						
							| 74 | 
							
								70 71 73
							 | 
							jca32 | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) )  | 
						
						
							| 76 | 
							
								1 2 3 4 5 7 8 6 9 10 11
							 | 
							itsclinecirc0in | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) | 
						
						
							| 77 | 
							
								75 76
							 | 
							syl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) | 
						
						
							| 78 | 
							
								
							 | 
							opex | 
							 |-  <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V  | 
						
						
							| 79 | 
							
								
							 | 
							opex | 
							 |-  <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V  | 
						
						
							| 80 | 
							
								
							 | 
							opex | 
							 |-  <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V  | 
						
						
							| 81 | 
							
								
							 | 
							opex | 
							 |-  <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V  | 
						
						
							| 82 | 
							
								80 81
							 | 
							pm3.2i | 
							 |-  ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V )  | 
						
						
							| 83 | 
							
								48
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							orcom | 
							 |-  ( ( A =/= 0 \/ B =/= 0 ) <-> ( B =/= 0 \/ A =/= 0 ) )  | 
						
						
							| 86 | 
							
								21
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> A e. CC )  | 
						
						
							| 87 | 
							
								86
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> A e. CC )  | 
						
						
							| 88 | 
							
								35
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> C e. CC )  | 
						
						
							| 89 | 
							
								88
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> C e. CC )  | 
						
						
							| 90 | 
							
								87 89
							 | 
							mulcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( A x. C ) e. CC )  | 
						
						
							| 91 | 
							
								29
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> B e. CC )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> B e. CC )  | 
						
						
							| 93 | 
							
								41
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> D e. CC )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> D e. CC )  | 
						
						
							| 95 | 
							
								94
							 | 
							sqrtcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( sqrt ` D ) e. CC )  | 
						
						
							| 96 | 
							
								92 95
							 | 
							mulcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( B x. ( sqrt ` D ) ) e. CC )  | 
						
						
							| 97 | 
							
								90 96
							 | 
							addcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 98 | 
							
								90 96
							 | 
							subcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 99 | 
							
								46
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q e. RR )  | 
						
						
							| 100 | 
							
								99
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q e. CC )  | 
						
						
							| 101 | 
							
								51
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> Q =/= 0 )  | 
						
						
							| 102 | 
							
								100 101
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( Q e. CC /\ Q =/= 0 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( Q e. CC /\ Q =/= 0 ) )  | 
						
						
							| 104 | 
							
								
							 | 
							div11 | 
							 |-  ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC /\ ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) <-> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 105 | 
							
								97 98 103 104
							 | 
							syl3anc | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) <-> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							addsubeq0 | 
							 |-  ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) <-> ( B x. ( sqrt ` D ) ) = 0 ) )  | 
						
						
							| 107 | 
							
								90 96 106
							 | 
							syl2anc | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) <-> ( B x. ( sqrt ` D ) ) = 0 ) )  | 
						
						
							| 108 | 
							
								41 73
							 | 
							resqrtcld | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( sqrt ` D ) e. RR )  | 
						
						
							| 109 | 
							
								108
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( sqrt ` D ) e. CC )  | 
						
						
							| 110 | 
							
								91 109
							 | 
							mul0ord | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. ( sqrt ` D ) ) = 0 <-> ( B = 0 \/ ( sqrt ` D ) = 0 ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B x. ( sqrt ` D ) ) = 0 <-> ( B = 0 \/ ( sqrt ` D ) = 0 ) ) )  | 
						
						
							| 112 | 
							
								
							 | 
							eqneqall | 
							 |-  ( B = 0 -> ( B =/= 0 -> D = 0 ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							com12 | 
							 |-  ( B =/= 0 -> ( B = 0 -> D = 0 ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( B = 0 -> D = 0 ) )  | 
						
						
							| 115 | 
							
								
							 | 
							sqrt00 | 
							 |-  ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) )  | 
						
						
							| 116 | 
							
								41 73 115
							 | 
							syl2anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( sqrt ` D ) = 0 <-> D = 0 ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							biimpd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) )  | 
						
						
							| 119 | 
							
								114 118
							 | 
							jaod | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B = 0 \/ ( sqrt ` D ) = 0 ) -> D = 0 ) )  | 
						
						
							| 120 | 
							
								111 119
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( B x. ( sqrt ` D ) ) = 0 -> D = 0 ) )  | 
						
						
							| 121 | 
							
								107 120
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) = ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) -> D = 0 ) )  | 
						
						
							| 122 | 
							
								105 121
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> D = 0 ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							necon3d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ B =/= 0 ) -> ( D =/= 0 -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							impancom | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( B =/= 0 -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							imp | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							olcd | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( 1 =/= 1 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 128 | 
							
								
							 | 
							ovex | 
							 |-  ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. _V  | 
						
						
							| 129 | 
							
								127 128
							 | 
							opthne | 
							 |-  ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 1 =/= 1 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 130 | 
							
								126 129
							 | 
							sylibr | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. )  | 
						
						
							| 131 | 
							
								
							 | 
							1ne2 | 
							 |-  1 =/= 2  | 
						
						
							| 132 | 
							
								131
							 | 
							orci | 
							 |-  ( 1 =/= 2 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) )  | 
						
						
							| 133 | 
							
								127 128
							 | 
							opthne | 
							 |-  ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 1 =/= 2 \/ ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 134 | 
							
								132 133
							 | 
							mpbir | 
							 |-  <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >.  | 
						
						
							| 135 | 
							
								130 134
							 | 
							jctir | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ B =/= 0 ) -> ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							ex | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( B =/= 0 -> ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) )  | 
						
						
							| 137 | 
							
								27 33
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( B x. C ) e. RR )  | 
						
						
							| 138 | 
							
								137
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B x. C ) e. RR )  | 
						
						
							| 139 | 
							
								138
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. RR )  | 
						
						
							| 140 | 
							
								21 108
							 | 
							remulcld | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A x. ( sqrt ` D ) ) e. RR )  | 
						
						
							| 141 | 
							
								139 140
							 | 
							resubcld | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 142 | 
							
								141
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 144 | 
							
								29 35
							 | 
							remulcld | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. RR )  | 
						
						
							| 145 | 
							
								144 140
							 | 
							readdcld | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 146 | 
							
								145
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 147 | 
							
								146
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 148 | 
							
								102
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( Q e. CC /\ Q =/= 0 ) )  | 
						
						
							| 149 | 
							
								
							 | 
							div11 | 
							 |-  ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC /\ ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 150 | 
							
								143 147 148 149
							 | 
							syl3anc | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 151 | 
							
								139
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( B x. C ) e. CC )  | 
						
						
							| 152 | 
							
								140
							 | 
							recnd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( A x. ( sqrt ` D ) ) e. CC )  | 
						
						
							| 153 | 
							
								151 152
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) )  | 
						
						
							| 155 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) )  | 
						
						
							| 156 | 
							
								
							 | 
							addsubeq0 | 
							 |-  ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) )  | 
						
						
							| 157 | 
							
								155 156
							 | 
							bitrid | 
							 |-  ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) )  | 
						
						
							| 158 | 
							
								154 157
							 | 
							syl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) <-> ( A x. ( sqrt ` D ) ) = 0 ) )  | 
						
						
							| 159 | 
							
								86 109
							 | 
							mul0ord | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( ( A x. ( sqrt ` D ) ) = 0 <-> ( A = 0 \/ ( sqrt ` D ) = 0 ) ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A x. ( sqrt ` D ) ) = 0 <-> ( A = 0 \/ ( sqrt ` D ) = 0 ) ) )  | 
						
						
							| 161 | 
							
								
							 | 
							eqneqall | 
							 |-  ( A = 0 -> ( A =/= 0 -> D = 0 ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							com12 | 
							 |-  ( A =/= 0 -> ( A = 0 -> D = 0 ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							adantl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( A = 0 -> D = 0 ) )  | 
						
						
							| 164 | 
							
								117
							 | 
							adantr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( sqrt ` D ) = 0 -> D = 0 ) )  | 
						
						
							| 165 | 
							
								163 164
							 | 
							jaod | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A = 0 \/ ( sqrt ` D ) = 0 ) -> D = 0 ) )  | 
						
						
							| 166 | 
							
								160 165
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( A x. ( sqrt ` D ) ) = 0 -> D = 0 ) )  | 
						
						
							| 167 | 
							
								158 166
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) -> D = 0 ) )  | 
						
						
							| 168 | 
							
								150 167
							 | 
							sylbid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> D = 0 ) )  | 
						
						
							| 169 | 
							
								168
							 | 
							necon3d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ A =/= 0 ) -> ( D =/= 0 -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							impancom | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							imp | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) )  | 
						
						
							| 172 | 
							
								171
							 | 
							olcd | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( 2 =/= 2 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 173 | 
							
								
							 | 
							2ex | 
							 |-  2 e. _V  | 
						
						
							| 174 | 
							
								
							 | 
							ovex | 
							 |-  ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. _V  | 
						
						
							| 175 | 
							
								173 174
							 | 
							opthne | 
							 |-  ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 2 =/= 2 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 176 | 
							
								172 175
							 | 
							sylibr | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. )  | 
						
						
							| 177 | 
							
								131
							 | 
							necomi | 
							 |-  2 =/= 1  | 
						
						
							| 178 | 
							
								177
							 | 
							orci | 
							 |-  ( 2 =/= 1 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) )  | 
						
						
							| 179 | 
							
								173 174
							 | 
							opthne | 
							 |-  ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. <-> ( 2 =/= 1 \/ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) =/= ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) )  | 
						
						
							| 180 | 
							
								178 179
							 | 
							mpbir | 
							 |-  <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >.  | 
						
						
							| 181 | 
							
								176 180
							 | 
							jctil | 
							 |-  ( ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) /\ A =/= 0 ) -> ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) )  | 
						
						
							| 182 | 
							
								181
							 | 
							ex | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( A =/= 0 -> ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) )  | 
						
						
							| 183 | 
							
								136 182
							 | 
							orim12d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( B =/= 0 \/ A =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) )  | 
						
						
							| 184 | 
							
								85 183
							 | 
							biimtrid | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( A =/= 0 \/ B =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) )  | 
						
						
							| 185 | 
							
								84 184
							 | 
							mpd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) )  | 
						
						
							| 186 | 
							
								
							 | 
							prneimg | 
							 |-  ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) /\ ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) ) -> ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) | 
						
						
							| 187 | 
							
								186
							 | 
							imp | 
							 |-  ( ( ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) /\ ( <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. e. _V /\ <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. e. _V ) ) /\ ( ( <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) \/ ( <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. /\ <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. =/= <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. ) ) ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) | 
						
						
							| 188 | 
							
								78 79 82 185 187
							 | 
							mpsyl4anc | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) | 
						
						
							| 189 | 
							
								77 188
							 | 
							jca | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) | 
						
						
							| 190 | 
							
								61 69 189
							 | 
							3jca | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) /\ D =/= 0 ) -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) | 
						
						
							| 191 | 
							
								13 190
							 | 
							mpdan | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) | 
						
						
							| 192 | 
							
								
							 | 
							preq1 | 
							 |-  ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> { a , b } = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } ) | 
						
						
							| 193 | 
							
								192
							 | 
							eqeq2d | 
							 |-  ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } <-> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } ) ) | 
						
						
							| 194 | 
							
								
							 | 
							neeq1 | 
							 |-  ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( a =/= b <-> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) ) | 
						
						
							| 195 | 
							
								193 194
							 | 
							anbi12d | 
							 |-  ( a = { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) <-> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) ) ) | 
						
						
							| 196 | 
							
								
							 | 
							preq2 | 
							 |-  ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) | 
						
						
							| 197 | 
							
								196
							 | 
							eqeq2d | 
							 |-  ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } <-> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
						
							| 198 | 
							
								
							 | 
							neeq2 | 
							 |-  ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b <-> { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) | 
						
						
							| 199 | 
							
								197 198
							 | 
							anbi12d | 
							 |-  ( b = { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } -> ( ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , b } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= b ) <-> ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) ) | 
						
						
							| 200 | 
							
								195 199
							 | 
							rspc2ev | 
							 |-  ( ( { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } e. P /\ ( ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } /\ { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } =/= { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) | 
						
						
							| 201 | 
							
								191 200
							 | 
							syl | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 < D ) ) -> E. a e. P E. b e. P ( ( ( .0. S R ) i^i ( X L Y ) ) = { a , b } /\ a =/= b ) ) |