Step |
Hyp |
Ref |
Expression |
1 |
|
inlinecirc02p.i |
|- I = { 1 , 2 } |
2 |
|
inlinecirc02p.e |
|- E = ( RR^ ` I ) |
3 |
|
inlinecirc02p.p |
|- P = ( RR ^m I ) |
4 |
|
inlinecirc02p.s |
|- S = ( Sphere ` E ) |
5 |
|
inlinecirc02p.0 |
|- .0. = ( I X. { 0 } ) |
6 |
|
inlinecirc02p.l |
|- L = ( LineM ` E ) |
7 |
|
inlinecirc02p.d |
|- D = ( dist ` E ) |
8 |
1 2 3 4 5 6 7
|
inlinecirc02p |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) e. ( PrPairs ` P ) ) |
9 |
|
reueq |
|- ( ( ( .0. S R ) i^i ( X L Y ) ) e. ( PrPairs ` P ) <-> E! p e. ( PrPairs ` P ) p = ( ( .0. S R ) i^i ( X L Y ) ) ) |
10 |
8 9
|
sylib |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> E! p e. ( PrPairs ` P ) p = ( ( .0. S R ) i^i ( X L Y ) ) ) |
11 |
3
|
ovexi |
|- P e. _V |
12 |
|
prprreueq |
|- ( P e. _V -> ( E! p e. ( PrPairs ` P ) p = ( ( .0. S R ) i^i ( X L Y ) ) <-> E! p e. ~P P ( ( # ` p ) = 2 /\ p = ( ( .0. S R ) i^i ( X L Y ) ) ) ) ) |
13 |
11 12
|
mp1i |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( E! p e. ( PrPairs ` P ) p = ( ( .0. S R ) i^i ( X L Y ) ) <-> E! p e. ~P P ( ( # ` p ) = 2 /\ p = ( ( .0. S R ) i^i ( X L Y ) ) ) ) ) |
14 |
10 13
|
mpbid |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> E! p e. ~P P ( ( # ` p ) = 2 /\ p = ( ( .0. S R ) i^i ( X L Y ) ) ) ) |