Metamath Proof Explorer


Theorem inlresf1

Description: The left injection restricted to the left class of a disjoint union is an injective function from the left class into the disjoint union. (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion inlresf1
|- ( inl |` A ) : A -1-1-> ( A |_| B )

Proof

Step Hyp Ref Expression
1 djulf1o
 |-  inl : _V -1-1-onto-> ( { (/) } X. _V )
2 f1of1
 |-  ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl : _V -1-1-> ( { (/) } X. _V ) )
3 1 2 ax-mp
 |-  inl : _V -1-1-> ( { (/) } X. _V )
4 ssv
 |-  A C_ _V
5 inlresf
 |-  ( inl |` A ) : A --> ( A |_| B )
6 f1resf1
 |-  ( ( inl : _V -1-1-> ( { (/) } X. _V ) /\ A C_ _V /\ ( inl |` A ) : A --> ( A |_| B ) ) -> ( inl |` A ) : A -1-1-> ( A |_| B ) )
7 3 4 5 6 mp3an
 |-  ( inl |` A ) : A -1-1-> ( A |_| B )