| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difundi |
|- ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) |
| 2 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 3 |
|
dfss4 |
|- ( A C_ RR <-> ( RR \ ( RR \ A ) ) = A ) |
| 4 |
2 3
|
sylib |
|- ( A e. dom vol -> ( RR \ ( RR \ A ) ) = A ) |
| 5 |
|
mblss |
|- ( B e. dom vol -> B C_ RR ) |
| 6 |
|
dfss4 |
|- ( B C_ RR <-> ( RR \ ( RR \ B ) ) = B ) |
| 7 |
5 6
|
sylib |
|- ( B e. dom vol -> ( RR \ ( RR \ B ) ) = B ) |
| 8 |
4 7
|
ineqan12d |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) = ( A i^i B ) ) |
| 9 |
1 8
|
eqtrid |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( A i^i B ) ) |
| 10 |
|
cmmbl |
|- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |
| 11 |
|
cmmbl |
|- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
| 12 |
|
unmbl |
|- ( ( ( RR \ A ) e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
| 13 |
10 11 12
|
syl2an |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
| 14 |
|
cmmbl |
|- ( ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
| 15 |
13 14
|
syl |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
| 16 |
9 15
|
eqeltrrd |
|- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |