Metamath Proof Explorer


Theorem inn0f

Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses inn0f.1
|- F/_ x A
inn0f.2
|- F/_ x B
Assertion inn0f
|- ( ( A i^i B ) =/= (/) <-> E. x e. A x e. B )

Proof

Step Hyp Ref Expression
1 inn0f.1
 |-  F/_ x A
2 inn0f.2
 |-  F/_ x B
3 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
4 3 exbii
 |-  ( E. x x e. ( A i^i B ) <-> E. x ( x e. A /\ x e. B ) )
5 1 2 nfin
 |-  F/_ x ( A i^i B )
6 5 n0f
 |-  ( ( A i^i B ) =/= (/) <-> E. x x e. ( A i^i B ) )
7 df-rex
 |-  ( E. x e. A x e. B <-> E. x ( x e. A /\ x e. B ) )
8 4 6 7 3bitr4i
 |-  ( ( A i^i B ) =/= (/) <-> E. x e. A x e. B )