Step |
Hyp |
Ref |
Expression |
1 |
|
relopabv |
|- Rel { <. x , y >. | ph } |
2 |
|
relin1 |
|- ( Rel { <. x , y >. | ph } -> Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) ) |
3 |
1 2
|
ax-mp |
|- Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) |
4 |
|
relopabv |
|- Rel { <. x , y >. | ( ph /\ ps ) } |
5 |
|
sban |
|- ( [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
6 |
|
sban |
|- ( [ w / y ] ( ph /\ ps ) <-> ( [ w / y ] ph /\ [ w / y ] ps ) ) |
7 |
6
|
sbbii |
|- ( [ z / x ] [ w / y ] ( ph /\ ps ) <-> [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) ) |
8 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
9 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ps } <-> [ z / x ] [ w / y ] ps ) |
10 |
8 9
|
anbi12i |
|- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
11 |
5 7 10
|
3bitr4ri |
|- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
12 |
|
elin |
|- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) ) |
13 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
14 |
11 12 13
|
3bitr4i |
|- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } ) |
15 |
3 4 14
|
eqrelriiv |
|- ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) = { <. x , y >. | ( ph /\ ps ) } |