| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabv |
|- Rel { <. x , y >. | ph } |
| 2 |
|
relin1 |
|- ( Rel { <. x , y >. | ph } -> Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) ) |
| 3 |
1 2
|
ax-mp |
|- Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) |
| 4 |
|
relopabv |
|- Rel { <. x , y >. | ( ph /\ ps ) } |
| 5 |
|
sban |
|- ( [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
| 6 |
|
sban |
|- ( [ w / y ] ( ph /\ ps ) <-> ( [ w / y ] ph /\ [ w / y ] ps ) ) |
| 7 |
6
|
sbbii |
|- ( [ z / x ] [ w / y ] ( ph /\ ps ) <-> [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) ) |
| 8 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
| 9 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ps } <-> [ z / x ] [ w / y ] ps ) |
| 10 |
8 9
|
anbi12i |
|- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
| 11 |
5 7 10
|
3bitr4ri |
|- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
| 12 |
|
elin |
|- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) ) |
| 13 |
|
vopelopabsb |
|- ( <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
| 14 |
11 12 13
|
3bitr4i |
|- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } ) |
| 15 |
3 4 14
|
eqrelriiv |
|- ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) = { <. x , y >. | ( ph /\ ps ) } |